| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xleadd1a | Structured version Visualization version Unicode version | ||
| Description: Extended real version of
leadd1 10496; note that the converse implication is
not true, unlike the real version (for example |
| Ref | Expression |
|---|---|
| xleadd1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrr 801 |
. . . . . . 7
| |
| 2 | simpr 477 |
. . . . . . 7
| |
| 3 | simplrl 800 |
. . . . . . 7
| |
| 4 | simpllr 799 |
. . . . . . 7
| |
| 5 | 1, 2, 3, 4 | leadd1dd 10641 |
. . . . . 6
|
| 6 | rexadd 12063 |
. . . . . . 7
| |
| 7 | 1, 3, 6 | syl2anc 693 |
. . . . . 6
|
| 8 | rexadd 12063 |
. . . . . . 7
| |
| 9 | 2, 3, 8 | syl2anc 693 |
. . . . . 6
|
| 10 | 5, 7, 9 | 3brtr4d 4685 |
. . . . 5
|
| 11 | simpl1 1064 |
. . . . . . . . 9
| |
| 12 | simpl3 1066 |
. . . . . . . . 9
| |
| 13 | xaddcl 12070 |
. . . . . . . . 9
| |
| 14 | 11, 12, 13 | syl2anc 693 |
. . . . . . . 8
|
| 15 | 14 | ad2antrr 762 |
. . . . . . 7
|
| 16 | pnfge 11964 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 17 |
. . . . . 6
|
| 18 | oveq1 6657 |
. . . . . . 7
| |
| 19 | rexr 10085 |
. . . . . . . . 9
| |
| 20 | renemnf 10088 |
. . . . . . . . 9
| |
| 21 | xaddpnf2 12058 |
. . . . . . . . 9
| |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . . . . . 8
|
| 23 | 22 | ad2antrl 764 |
. . . . . . 7
|
| 24 | 18, 23 | sylan9eqr 2678 |
. . . . . 6
|
| 25 | 17, 24 | breqtrrd 4681 |
. . . . 5
|
| 26 | 14 | adantr 481 |
. . . . . . . 8
|
| 27 | xrleid 11983 |
. . . . . . . 8
| |
| 28 | 26, 27 | syl 17 |
. . . . . . 7
|
| 29 | simplr 792 |
. . . . . . . . 9
| |
| 30 | simpr 477 |
. . . . . . . . . 10
| |
| 31 | 11 | adantr 481 |
. . . . . . . . . . 11
|
| 32 | mnfle 11969 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . 10
|
| 34 | 30, 33 | eqbrtrd 4675 |
. . . . . . . . 9
|
| 35 | simpl2 1065 |
. . . . . . . . . . 11
| |
| 36 | xrletri3 11985 |
. . . . . . . . . . 11
| |
| 37 | 11, 35, 36 | syl2anc 693 |
. . . . . . . . . 10
|
| 38 | 37 | adantr 481 |
. . . . . . . . 9
|
| 39 | 29, 34, 38 | mpbir2and 957 |
. . . . . . . 8
|
| 40 | 39 | oveq1d 6665 |
. . . . . . 7
|
| 41 | 28, 40 | breqtrd 4679 |
. . . . . 6
|
| 42 | 41 | adantlr 751 |
. . . . 5
|
| 43 | elxr 11950 |
. . . . . . 7
| |
| 44 | 35, 43 | sylib 208 |
. . . . . 6
|
| 45 | 44 | adantr 481 |
. . . . 5
|
| 46 | 10, 25, 42, 45 | mpjao3dan 1395 |
. . . 4
|
| 47 | 46 | anassrs 680 |
. . 3
|
| 48 | 14 | adantr 481 |
. . . . . 6
|
| 49 | 48, 27 | syl 17 |
. . . . 5
|
| 50 | simplr 792 |
. . . . . . 7
| |
| 51 | pnfge 11964 |
. . . . . . . . . 10
| |
| 52 | 35, 51 | syl 17 |
. . . . . . . . 9
|
| 53 | 52 | adantr 481 |
. . . . . . . 8
|
| 54 | simpr 477 |
. . . . . . . 8
| |
| 55 | 53, 54 | breqtrrd 4681 |
. . . . . . 7
|
| 56 | 37 | adantr 481 |
. . . . . . 7
|
| 57 | 50, 55, 56 | mpbir2and 957 |
. . . . . 6
|
| 58 | 57 | oveq1d 6665 |
. . . . 5
|
| 59 | 49, 58 | breqtrd 4679 |
. . . 4
|
| 60 | 59 | adantlr 751 |
. . 3
|
| 61 | oveq1 6657 |
. . . . 5
| |
| 62 | renepnf 10087 |
. . . . . . 7
| |
| 63 | xaddmnf2 12060 |
. . . . . . 7
| |
| 64 | 19, 62, 63 | syl2anc 693 |
. . . . . 6
|
| 65 | 64 | adantl 482 |
. . . . 5
|
| 66 | 61, 65 | sylan9eqr 2678 |
. . . 4
|
| 67 | xaddcl 12070 |
. . . . . . 7
| |
| 68 | 35, 12, 67 | syl2anc 693 |
. . . . . 6
|
| 69 | 68 | ad2antrr 762 |
. . . . 5
|
| 70 | mnfle 11969 |
. . . . 5
| |
| 71 | 69, 70 | syl 17 |
. . . 4
|
| 72 | 66, 71 | eqbrtrd 4675 |
. . 3
|
| 73 | elxr 11950 |
. . . . 5
| |
| 74 | 11, 73 | sylib 208 |
. . . 4
|
| 75 | 74 | adantr 481 |
. . 3
|
| 76 | 47, 60, 72, 75 | mpjao3dan 1395 |
. 2
|
| 77 | 41 | adantlr 751 |
. . 3
|
| 78 | 14 | ad2antrr 762 |
. . . . 5
|
| 79 | 78, 16 | syl 17 |
. . . 4
|
| 80 | simplr 792 |
. . . . . 6
| |
| 81 | 80 | oveq2d 6666 |
. . . . 5
|
| 82 | 35 | adantr 481 |
. . . . . 6
|
| 83 | xaddpnf1 12057 |
. . . . . 6
| |
| 84 | 82, 83 | sylan 488 |
. . . . 5
|
| 85 | 81, 84 | eqtrd 2656 |
. . . 4
|
| 86 | 79, 85 | breqtrrd 4681 |
. . 3
|
| 87 | 77, 86 | pm2.61dane 2881 |
. 2
|
| 88 | 59 | adantlr 751 |
. . 3
|
| 89 | simplr 792 |
. . . . . 6
| |
| 90 | 89 | oveq2d 6666 |
. . . . 5
|
| 91 | 11 | adantr 481 |
. . . . . 6
|
| 92 | xaddmnf1 12059 |
. . . . . 6
| |
| 93 | 91, 92 | sylan 488 |
. . . . 5
|
| 94 | 90, 93 | eqtrd 2656 |
. . . 4
|
| 95 | 68 | ad2antrr 762 |
. . . . 5
|
| 96 | 95, 70 | syl 17 |
. . . 4
|
| 97 | 94, 96 | eqbrtrd 4675 |
. . 3
|
| 98 | 88, 97 | pm2.61dane 2881 |
. 2
|
| 99 | elxr 11950 |
. . 3
| |
| 100 | 12, 99 | sylib 208 |
. 2
|
| 101 | 76, 87, 98, 100 | mpjao3dan 1395 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-xadd 11947 |
| This theorem is referenced by: xleadd2a 12084 xleadd1 12085 xaddge0 12088 xle2add 12089 imasdsf1olem 22178 xblss2ps 22206 xblss2 22207 stdbdxmet 22320 xrge0omnd 29711 measunl 30279 carsgclctunlem2 30381 xleadd1d 39545 |
| Copyright terms: Public domain | W3C validator |