MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xov1plusxeqvd Structured version   Visualization version   Unicode version

Theorem xov1plusxeqvd 12318
Description: A complex number  X is positive real iff  X  / 
( 1  +  X
) is in  ( 0 (,) 1 ). Deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
xov1plusxeqvd.1  |-  ( ph  ->  X  e.  CC )
xov1plusxeqvd.2  |-  ( ph  ->  X  =/=  -u 1
)
Assertion
Ref Expression
xov1plusxeqvd  |-  ( ph  ->  ( X  e.  RR+  <->  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) ) )

Proof of Theorem xov1plusxeqvd
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  X  e.  RR+ )
21rpred 11872 . . . 4  |-  ( (
ph  /\  X  e.  RR+ )  ->  X  e.  RR )
3 1rp 11836 . . . . . 6  |-  1  e.  RR+
43a1i 11 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  1  e.  RR+ )
54, 1rpaddcld 11887 . . . 4  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  +  X )  e.  RR+ )
62, 5rerpdivcld 11903 . . 3  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( X  /  ( 1  +  X ) )  e.  RR )
75rprecred 11883 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  /  ( 1  +  X ) )  e.  RR )
8 1red 10055 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  1  e.  RR )
9 0red 10041 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  0  e.  RR )
108, 2readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  +  X )  e.  RR )
118, 1ltaddrpd 11905 . . . . . . . 8  |-  ( (
ph  /\  X  e.  RR+ )  ->  1  <  ( 1  +  X ) )
12 recgt1i 10920 . . . . . . . 8  |-  ( ( ( 1  +  X
)  e.  RR  /\  1  <  ( 1  +  X ) )  -> 
( 0  <  (
1  /  ( 1  +  X ) )  /\  ( 1  / 
( 1  +  X
) )  <  1
) )
1310, 11, 12syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 0  <  ( 1  / 
( 1  +  X
) )  /\  (
1  /  ( 1  +  X ) )  <  1 ) )
1413simprd 479 . . . . . 6  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  /  ( 1  +  X ) )  <  1 )
15 1m0e1 11131 . . . . . 6  |-  ( 1  -  0 )  =  1
1614, 15syl6breqr 4695 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  /  ( 1  +  X ) )  < 
( 1  -  0 ) )
177, 8, 9, 16ltsub13d 10633 . . . 4  |-  ( (
ph  /\  X  e.  RR+ )  ->  0  <  ( 1  -  ( 1  /  ( 1  +  X ) ) ) )
18 1cnd 10056 . . . . . . . 8  |-  ( ph  ->  1  e.  CC )
19 xov1plusxeqvd.1 . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
2018, 19addcld 10059 . . . . . . 7  |-  ( ph  ->  ( 1  +  X
)  e.  CC )
2118negcld 10379 . . . . . . . . 9  |-  ( ph  -> 
-u 1  e.  CC )
22 xov1plusxeqvd.2 . . . . . . . . 9  |-  ( ph  ->  X  =/=  -u 1
)
2318, 19, 21, 22addneintrd 10243 . . . . . . . 8  |-  ( ph  ->  ( 1  +  X
)  =/=  ( 1  +  -u 1 ) )
24 1pneg1e0 11129 . . . . . . . . 9  |-  ( 1  +  -u 1 )  =  0
2524a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 1  +  -u
1 )  =  0 )
2623, 25neeqtrd 2863 . . . . . . 7  |-  ( ph  ->  ( 1  +  X
)  =/=  0 )
2720, 18, 20, 26divsubdird 10840 . . . . . 6  |-  ( ph  ->  ( ( ( 1  +  X )  - 
1 )  /  (
1  +  X ) )  =  ( ( ( 1  +  X
)  /  ( 1  +  X ) )  -  ( 1  / 
( 1  +  X
) ) ) )
2818, 19pncan2d 10394 . . . . . . 7  |-  ( ph  ->  ( ( 1  +  X )  -  1 )  =  X )
2928oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( 1  +  X )  - 
1 )  /  (
1  +  X ) )  =  ( X  /  ( 1  +  X ) ) )
3020, 26dividd 10799 . . . . . . 7  |-  ( ph  ->  ( ( 1  +  X )  /  (
1  +  X ) )  =  1 )
3130oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( ( 1  +  X )  / 
( 1  +  X
) )  -  (
1  /  ( 1  +  X ) ) )  =  ( 1  -  ( 1  / 
( 1  +  X
) ) ) )
3227, 29, 313eqtr3d 2664 . . . . 5  |-  ( ph  ->  ( X  /  (
1  +  X ) )  =  ( 1  -  ( 1  / 
( 1  +  X
) ) ) )
3332adantr 481 . . . 4  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( X  /  ( 1  +  X ) )  =  ( 1  -  (
1  /  ( 1  +  X ) ) ) )
3417, 33breqtrrd 4681 . . 3  |-  ( (
ph  /\  X  e.  RR+ )  ->  0  <  ( X  /  ( 1  +  X ) ) )
35 1m1e0 11089 . . . . . 6  |-  ( 1  -  1 )  =  0
3613simpld 475 . . . . . 6  |-  ( (
ph  /\  X  e.  RR+ )  ->  0  <  ( 1  /  ( 1  +  X ) ) )
3735, 36syl5eqbr 4688 . . . . 5  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  -  1 )  < 
( 1  /  (
1  +  X ) ) )
388, 8, 7, 37ltsub23d 10632 . . . 4  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( 1  -  ( 1  / 
( 1  +  X
) ) )  <  1 )
3933, 38eqbrtrd 4675 . . 3  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( X  /  ( 1  +  X ) )  <  1 )
40 0xr 10086 . . . 4  |-  0  e.  RR*
41 1re 10039 . . . . 5  |-  1  e.  RR
4241rexri 10097 . . . 4  |-  1  e.  RR*
43 elioo2 12216 . . . 4  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( X  /  (
1  +  X ) )  e.  ( 0 (,) 1 )  <->  ( ( X  /  ( 1  +  X ) )  e.  RR  /\  0  < 
( X  /  (
1  +  X ) )  /\  ( X  /  ( 1  +  X ) )  <  1 ) ) )
4440, 42, 43mp2an 708 . . 3  |-  ( ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1 )  <->  ( ( X  /  ( 1  +  X ) )  e.  RR  /\  0  < 
( X  /  (
1  +  X ) )  /\  ( X  /  ( 1  +  X ) )  <  1 ) )
456, 34, 39, 44syl3anbrc 1246 . 2  |-  ( (
ph  /\  X  e.  RR+ )  ->  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )
4628adantr 481 . . . 4  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
( 1  +  X
)  -  1 )  =  X )
4720adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  +  X )  e.  CC )
4826adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  +  X )  =/=  0 )
4947, 48recrecd 10798 . . . . . 6  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  /  ( 1  /  ( 1  +  X ) ) )  =  ( 1  +  X ) )
5020, 19, 20, 26divsubdird 10840 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  +  X )  -  X )  /  (
1  +  X ) )  =  ( ( ( 1  +  X
)  /  ( 1  +  X ) )  -  ( X  / 
( 1  +  X
) ) ) )
5118, 19pncand 10393 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  +  X )  -  X
)  =  1 )
5251oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  +  X )  -  X )  /  (
1  +  X ) )  =  ( 1  /  ( 1  +  X ) ) )
5330oveq1d 6665 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  +  X )  / 
( 1  +  X
) )  -  ( X  /  ( 1  +  X ) ) )  =  ( 1  -  ( X  /  (
1  +  X ) ) ) )
5450, 52, 533eqtr3d 2664 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
1  +  X ) )  =  ( 1  -  ( X  / 
( 1  +  X
) ) ) )
5554adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  /  ( 1  +  X ) )  =  ( 1  -  ( X  /  (
1  +  X ) ) ) )
56 1red 10055 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
57 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )
5857, 44sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
( X  /  (
1  +  X ) )  e.  RR  /\  0  <  ( X  / 
( 1  +  X
) )  /\  ( X  /  ( 1  +  X ) )  <  1 ) )
5958simp1d 1073 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  ( X  /  ( 1  +  X ) )  e.  RR )
6056, 59resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  -  ( X  /  ( 1  +  X ) ) )  e.  RR )
6155, 60eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  /  ( 1  +  X ) )  e.  RR )
62 0red 10041 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  0  e.  RR )
6358simp3d 1075 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  ( X  /  ( 1  +  X ) )  <  1 )
6463, 15syl6breqr 4695 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  ( X  /  ( 1  +  X ) )  < 
( 1  -  0 ) )
6559, 56, 62, 64ltsub13d 10633 . . . . . . . . 9  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  0  <  ( 1  -  ( X  /  ( 1  +  X ) ) ) )
6665, 55breqtrrd 4681 . . . . . . . 8  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  0  <  ( 1  /  (
1  +  X ) ) )
6761, 66elrpd 11869 . . . . . . 7  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  /  ( 1  +  X ) )  e.  RR+ )
6867rprecred 11883 . . . . . 6  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  /  ( 1  /  ( 1  +  X ) ) )  e.  RR )
6949, 68eqeltrrd 2702 . . . . 5  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  +  X )  e.  RR )
7069, 56resubcld 10458 . . . 4  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
( 1  +  X
)  -  1 )  e.  RR )
7146, 70eqeltrrd 2702 . . 3  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  X  e.  RR )
72 1p0e1 11133 . . . . 5  |-  ( 1  +  0 )  =  1
7358simp2d 1074 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  0  <  ( X  /  (
1  +  X ) ) )
7435, 73syl5eqbr 4688 . . . . . . . . 9  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  -  1 )  <  ( X  / 
( 1  +  X
) ) )
7556, 56, 59, 74ltsub23d 10632 . . . . . . . 8  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  -  ( X  /  ( 1  +  X ) ) )  <  1 )
7655, 75eqbrtrd 4675 . . . . . . 7  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  /  ( 1  +  X ) )  <  1 )
7767reclt1d 11885 . . . . . . 7  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
( 1  /  (
1  +  X ) )  <  1  <->  1  <  ( 1  / 
( 1  /  (
1  +  X ) ) ) ) )
7876, 77mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  1  <  ( 1  /  (
1  /  ( 1  +  X ) ) ) )
7978, 49breqtrd 4679 . . . . 5  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  1  <  ( 1  +  X
) )
8072, 79syl5eqbr 4688 . . . 4  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
1  +  0 )  <  ( 1  +  X ) )
8162, 71, 56ltadd2d 10193 . . . 4  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  (
0  <  X  <->  ( 1  +  0 )  < 
( 1  +  X
) ) )
8280, 81mpbird 247 . . 3  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  0  <  X )
8371, 82elrpd 11869 . 2  |-  ( (
ph  /\  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) )  ->  X  e.  RR+ )
8445, 83impbida 877 1  |-  ( ph  ->  ( X  e.  RR+  <->  ( X  /  ( 1  +  X ) )  e.  ( 0 (,) 1
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   RR+crp 11832   (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833  df-ioo 12179
This theorem is referenced by:  angpieqvdlem  24555
  Copyright terms: Public domain W3C validator