MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxplem Structured version   Visualization version   Unicode version

Theorem hashxplem 13220
Description: Lemma for hashxp 13221. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypothesis
Ref Expression
hashxplem.1  |-  B  e. 
Fin
Assertion
Ref Expression
hashxplem  |-  ( A  e.  Fin  ->  ( # `
 ( A  X.  B ) )  =  ( ( # `  A
)  x.  ( # `  B ) ) )

Proof of Theorem hashxplem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5128 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 6195 . . 3  |-  ( x  =  (/)  ->  ( # `  ( x  X.  B
) )  =  (
# `  ( (/)  X.  B
) ) )
3 fveq2 6191 . . . 4  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
43oveq1d 6665 . . 3  |-  ( x  =  (/)  ->  ( (
# `  x )  x.  ( # `  B
) )  =  ( ( # `  (/) )  x.  ( # `  B
) ) )
52, 4eqeq12d 2637 . 2  |-  ( x  =  (/)  ->  ( (
# `  ( x  X.  B ) )  =  ( ( # `  x
)  x.  ( # `  B ) )  <->  ( # `  ( (/) 
X.  B ) )  =  ( ( # `  (/) )  x.  ( # `
 B ) ) ) )
6 xpeq1 5128 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 6195 . . 3  |-  ( x  =  y  ->  ( # `
 ( x  X.  B ) )  =  ( # `  (
y  X.  B ) ) )
8 fveq2 6191 . . . 4  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
98oveq1d 6665 . . 3  |-  ( x  =  y  ->  (
( # `  x )  x.  ( # `  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )
107, 9eqeq12d 2637 . 2  |-  ( x  =  y  ->  (
( # `  ( x  X.  B ) )  =  ( ( # `  x )  x.  ( # `
 B ) )  <-> 
( # `  ( y  X.  B ) )  =  ( ( # `  y )  x.  ( # `
 B ) ) ) )
11 xpeq1 5128 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 6195 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( # `  (
x  X.  B ) )  =  ( # `  ( ( y  u. 
{ z } )  X.  B ) ) )
13 fveq2 6191 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( # `  x
)  =  ( # `  ( y  u.  {
z } ) ) )
1413oveq1d 6665 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( # `  x )  x.  ( # `
 B ) )  =  ( ( # `  ( y  u.  {
z } ) )  x.  ( # `  B
) ) )
1512, 14eqeq12d 2637 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( # `  ( x  X.  B
) )  =  ( ( # `  x
)  x.  ( # `  B ) )  <->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  u.  { z } ) )  x.  ( # `  B
) ) ) )
16 xpeq1 5128 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 6195 . . 3  |-  ( x  =  A  ->  ( # `
 ( x  X.  B ) )  =  ( # `  ( A  X.  B ) ) )
18 fveq2 6191 . . . 4  |-  ( x  =  A  ->  ( # `
 x )  =  ( # `  A
) )
1918oveq1d 6665 . . 3  |-  ( x  =  A  ->  (
( # `  x )  x.  ( # `  B
) )  =  ( ( # `  A
)  x.  ( # `  B ) ) )
2017, 19eqeq12d 2637 . 2  |-  ( x  =  A  ->  (
( # `  ( x  X.  B ) )  =  ( ( # `  x )  x.  ( # `
 B ) )  <-> 
( # `  ( A  X.  B ) )  =  ( ( # `  A )  x.  ( # `
 B ) ) ) )
21 hashxplem.1 . . . 4  |-  B  e. 
Fin
22 hashcl 13147 . . . . . 6  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
2322nn0cnd 11353 . . . . 5  |-  ( B  e.  Fin  ->  ( # `
 B )  e.  CC )
2423mul02d 10234 . . . 4  |-  ( B  e.  Fin  ->  (
0  x.  ( # `  B ) )  =  0 )
2521, 24ax-mp 5 . . 3  |-  ( 0  x.  ( # `  B
) )  =  0
26 hash0 13158 . . . 4  |-  ( # `  (/) )  =  0
2726oveq1i 6660 . . 3  |-  ( (
# `  (/) )  x.  ( # `  B
) )  =  ( 0  x.  ( # `  B ) )
28 0xp 5199 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2928fveq2i 6194 . . . 4  |-  ( # `  ( (/)  X.  B
) )  =  (
# `  (/) )
3029, 26eqtri 2644 . . 3  |-  ( # `  ( (/)  X.  B
) )  =  0
3125, 27, 303eqtr4ri 2655 . 2  |-  ( # `  ( (/)  X.  B
) )  =  ( ( # `  (/) )  x.  ( # `  B
) )
32 oveq1 6657 . . . . 5  |-  ( (
# `  ( y  X.  B ) )  =  ( ( # `  y
)  x.  ( # `  B ) )  -> 
( ( # `  (
y  X.  B ) )  +  ( # `  B ) )  =  ( ( ( # `  y )  x.  ( # `
 B ) )  +  ( # `  B
) ) )
3332adantl 482 . . . 4  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( ( # `  ( y  X.  B
) )  +  (
# `  B )
)  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
34 xpundir 5172 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 6194 . . . . . 6  |-  ( # `  ( ( y  u. 
{ z } )  X.  B ) )  =  ( # `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )
36 xpfi 8231 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3721, 36mpan2 707 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
y  X.  B )  e.  Fin )
38 inxp 5254 . . . . . . . . 9  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
39 disjsn 4246 . . . . . . . . . . . 12  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
4039biimpri 218 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
4140xpeq1d 5138 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
42 0xp 5199 . . . . . . . . . 10  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
4341, 42syl6eq 2672 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
4438, 43syl5eq 2668 . . . . . . . 8  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
45 snfi 8038 . . . . . . . . . 10  |-  { z }  e.  Fin
46 xpfi 8231 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4745, 21, 46mp2an 708 . . . . . . . . 9  |-  ( { z }  X.  B
)  e.  Fin
48 hashun 13171 . . . . . . . . 9  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( # `  ( ( y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( # `  ( y  X.  B
) )  +  (
# `  ( {
z }  X.  B
) ) ) )
4947, 48mp3an2 1412 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( # `  ( ( y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( # `  ( y  X.  B
) )  +  (
# `  ( {
z }  X.  B
) ) ) )
5037, 44, 49syl2an 494 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  ( { z }  X.  B ) ) ) )
51 snex 4908 . . . . . . . . . . 11  |-  { z }  e.  _V
5221elexi 3213 . . . . . . . . . . 11  |-  B  e. 
_V
5351, 52xpcomen 8051 . . . . . . . . . 10  |-  ( { z }  X.  B
)  ~~  ( B  X.  { z } )
54 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
5552, 54xpsnen 8044 . . . . . . . . . 10  |-  ( B  X.  { z } )  ~~  B
5653, 55entri 8010 . . . . . . . . 9  |-  ( { z }  X.  B
)  ~~  B
57 hashen 13135 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( (
# `  ( {
z }  X.  B
) )  =  (
# `  B )  <->  ( { z }  X.  B )  ~~  B
) )
5847, 21, 57mp2an 708 . . . . . . . . 9  |-  ( (
# `  ( {
z }  X.  B
) )  =  (
# `  B )  <->  ( { z }  X.  B )  ~~  B
)
5956, 58mpbir 221 . . . . . . . 8  |-  ( # `  ( { z }  X.  B ) )  =  ( # `  B
)
6059oveq2i 6661 . . . . . . 7  |-  ( (
# `  ( y  X.  B ) )  +  ( # `  ( { z }  X.  B ) ) )  =  ( ( # `  ( y  X.  B
) )  +  (
# `  B )
)
6150, 60syl6eq 2672 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  B ) ) )
6235, 61syl5eq 2668 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  B ) ) )
6362adantr 481 . . . 4  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  X.  B ) )  +  ( # `  B ) ) )
64 hashunsng 13181 . . . . . . . 8  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( # `  (
y  u.  { z } ) )  =  ( ( # `  y
)  +  1 ) ) )
6554, 64ax-mp 5 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( # `  (
y  u.  { z } ) )  =  ( ( # `  y
)  +  1 ) )
6665oveq1d 6665 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( # `
 ( y  u. 
{ z } ) )  x.  ( # `  B ) )  =  ( ( ( # `  y )  +  1 )  x.  ( # `  B ) ) )
67 hashcl 13147 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ( # `
 y )  e. 
NN0 )
6867nn0cnd 11353 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( # `
 y )  e.  CC )
69 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
70 nn0cn 11302 . . . . . . . . . . 11  |-  ( (
# `  B )  e.  NN0  ->  ( # `  B
)  e.  CC )
7121, 22, 70mp2b 10 . . . . . . . . . 10  |-  ( # `  B )  e.  CC
72 adddir 10031 . . . . . . . . . 10  |-  ( ( ( # `  y
)  e.  CC  /\  1  e.  CC  /\  ( # `
 B )  e.  CC )  ->  (
( ( # `  y
)  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) ) )
7369, 71, 72mp3an23 1416 . . . . . . . . 9  |-  ( (
# `  y )  e.  CC  ->  ( (
( # `  y )  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) ) )
7468, 73syl 17 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
( ( # `  y
)  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) ) )
7571mulid2i 10043 . . . . . . . . 9  |-  ( 1  x.  ( # `  B
) )  =  (
# `  B )
7675oveq2i 6661 . . . . . . . 8  |-  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( 1  x.  ( # `
 B ) ) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) )
7774, 76syl6eq 2672 . . . . . . 7  |-  ( y  e.  Fin  ->  (
( ( # `  y
)  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
7877adantr 481 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( # `  y )  +  1 )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
7966, 78eqtrd 2656 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( # `
 ( y  u. 
{ z } ) )  x.  ( # `  B ) )  =  ( ( ( # `  y )  x.  ( # `
 B ) )  +  ( # `  B
) ) )
8079adantr 481 . . . 4  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( ( # `  ( y  u.  {
z } ) )  x.  ( # `  B
) )  =  ( ( ( # `  y
)  x.  ( # `  B ) )  +  ( # `  B
) ) )
8133, 63, 803eqtr4d 2666 . . 3  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( # `  ( y  X.  B
) )  =  ( ( # `  y
)  x.  ( # `  B ) ) )  ->  ( # `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( # `  (
y  u.  { z } ) )  x.  ( # `  B
) ) )
8281ex 450 . 2  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( # `
 ( y  X.  B ) )  =  ( ( # `  y
)  x.  ( # `  B ) )  -> 
( # `  ( ( y  u.  { z } )  X.  B
) )  =  ( ( # `  (
y  u.  { z } ) )  x.  ( # `  B
) ) ) )
835, 10, 15, 20, 31, 82findcard2s 8201 1  |-  ( A  e.  Fin  ->  ( # `
 ( A  X.  B ) )  =  ( ( # `  A
)  x.  ( # `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650    ~~ cen 7952   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NN0cn0 11292   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  hashxp  13221
  Copyright terms: Public domain W3C validator