Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem6 Structured version   Visualization version   Unicode version

Theorem poimirlem6 33415
Description: Lemma for poimir 33442 establishing, for a face of a simplex defined by a walk along the edges of an  N-cube, the single dimension in which successive vertices before the opposite vertex differ. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem9.1  |-  ( ph  ->  T  e.  S )
poimirlem9.2  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
poimirlem6.3  |-  ( ph  ->  M  e.  ( 1 ... ( ( 2nd `  T )  -  1 ) ) )
Assertion
Ref Expression
poimirlem6  |-  ( ph  ->  ( iota_ n  e.  ( 1 ... N ) ( ( F `  ( M  -  1
) ) `  n
)  =/=  ( ( F `  M ) `
 n ) )  =  ( ( 2nd `  ( 1st `  T
) ) `  M
) )
Distinct variable groups:    f, j, n, t, y    ph, j, n, y    j, F, n, y    j, M, n, y    j, N, n, y    T, j, n, y    ph, t    f, K, j, n, t    f, M, t    f, N, t    T, f    f, F, t   
t, T    S, j, n, t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem6
StepHypRef Expression
1 poimirlem9.1 . . . . . . . 8  |-  ( ph  ->  T  e.  S )
2 elrabi 3359 . . . . . . . . 9  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
3 poimirlem22.s . . . . . . . . 9  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
42, 3eleq2s 2719 . . . . . . . 8  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
51, 4syl 17 . . . . . . 7  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
6 xp1st 7198 . . . . . . 7  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
75, 6syl 17 . . . . . 6  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
8 xp2nd 7199 . . . . . 6  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
97, 8syl 17 . . . . 5  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
10 fvex 6201 . . . . . 6  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
11 f1oeq1 6127 . . . . . 6  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
1210, 11elab 3350 . . . . 5  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
139, 12sylib 208 . . . 4  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
14 f1of 6137 . . . 4  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) --> ( 1 ... N
) )
1513, 14syl 17 . . 3  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
16 poimirlem9.2 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
17 elfznn 12370 . . . . . . . . 9  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  e.  NN )
1816, 17syl 17 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  T
)  e.  NN )
1918nnzd 11481 . . . . . . 7  |-  ( ph  ->  ( 2nd `  T
)  e.  ZZ )
20 peano2zm 11420 . . . . . . 7  |-  ( ( 2nd `  T )  e.  ZZ  ->  (
( 2nd `  T
)  -  1 )  e.  ZZ )
2119, 20syl 17 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  T
)  -  1 )  e.  ZZ )
22 poimir.0 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
2322nnzd 11481 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2421zred 11482 . . . . . . 7  |-  ( ph  ->  ( ( 2nd `  T
)  -  1 )  e.  RR )
2518nnred 11035 . . . . . . 7  |-  ( ph  ->  ( 2nd `  T
)  e.  RR )
2622nnred 11035 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
2725lem1d 10957 . . . . . . 7  |-  ( ph  ->  ( ( 2nd `  T
)  -  1 )  <_  ( 2nd `  T
) )
28 nnm1nn0 11334 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
2922, 28syl 17 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
3029nn0red 11352 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  e.  RR )
31 elfzle2 12345 . . . . . . . . 9  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  <_ 
( N  -  1 ) )
3216, 31syl 17 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  T
)  <_  ( N  -  1 ) )
3326lem1d 10957 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  <_  N )
3425, 30, 26, 32, 33letrd 10194 . . . . . . 7  |-  ( ph  ->  ( 2nd `  T
)  <_  N )
3524, 25, 26, 27, 34letrd 10194 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  T
)  -  1 )  <_  N )
36 eluz2 11693 . . . . . 6  |-  ( N  e.  ( ZZ>= `  (
( 2nd `  T
)  -  1 ) )  <->  ( ( ( 2nd `  T )  -  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( ( 2nd `  T )  -  1 )  <_  N ) )
3721, 23, 35, 36syl3anbrc 1246 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( 2nd `  T
)  -  1 ) ) )
38 fzss2 12381 . . . . 5  |-  ( N  e.  ( ZZ>= `  (
( 2nd `  T
)  -  1 ) )  ->  ( 1 ... ( ( 2nd `  T )  -  1 ) )  C_  (
1 ... N ) )
3937, 38syl 17 . . . 4  |-  ( ph  ->  ( 1 ... (
( 2nd `  T
)  -  1 ) )  C_  ( 1 ... N ) )
40 poimirlem6.3 . . . 4  |-  ( ph  ->  M  e.  ( 1 ... ( ( 2nd `  T )  -  1 ) ) )
4139, 40sseldd 3604 . . 3  |-  ( ph  ->  M  e.  ( 1 ... N ) )
4215, 41ffvelrnd 6360 . 2  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( 1 ... N
) )
43 xp1st 7198 . . . . . . . . . . . . 13  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
447, 43syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
45 elmapfn 7880 . . . . . . . . . . . 12  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
4644, 45syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
4746adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
48 1ex 10035 . . . . . . . . . . . . . . 15  |-  1  e.  _V
49 fnconstg 6093 . . . . . . . . . . . . . . 15  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) ) )
5048, 49ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )
51 c0ex 10034 . . . . . . . . . . . . . . 15  |-  0  e.  _V
52 fnconstg 6093 . . . . . . . . . . . . . . 15  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )
5450, 53pm3.2i 471 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
55 dff1o3 6143 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
5655simprbi 480 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
5713, 56syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
58 imain 5974 . . . . . . . . . . . . . . 15  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... ( M  -  1 ) )  i^i  ( M ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )
5957, 58syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( M ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) ) )
60 elfznn 12370 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( 1 ... ( ( 2nd `  T
)  -  1 ) )  ->  M  e.  NN )
6140, 60syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  NN )
6261nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  RR )
6362ltm1d 10956 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  1 )  <  M )
64 fzdisj 12368 . . . . . . . . . . . . . . . . 17  |-  ( ( M  -  1 )  <  M  ->  (
( 1 ... ( M  -  1 ) )  i^i  ( M ... N ) )  =  (/) )
6563, 64syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  i^i  ( M ... N ) )  =  (/) )
6665imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( M ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
67 ima0 5481 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
6866, 67syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( M ... N
) ) )  =  (/) )
6959, 68eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  (/) )
70 fnun 5997 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  (/) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )
7154, 69, 70sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )
7261nncnd 11036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  CC )
73 npcan1 10455 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  CC  ->  (
( M  -  1 )  +  1 )  =  M )
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
75 nnuz 11723 . . . . . . . . . . . . . . . . . . . 20  |-  NN  =  ( ZZ>= `  1 )
7661, 75syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
7774, 76eqeltrd 2701 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
78 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
7961, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
8079nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
81 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  -  1 )  e.  ZZ  ->  ( M  -  1 )  e.  ( ZZ>= `  ( M  -  1 ) ) )
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( M  -  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
83 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  -  1 )  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( ( M  -  1 )  +  1 )  e.  ( ZZ>= `  ( M  -  1 ) ) )
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
8574, 84eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  ( ZZ>= `  ( M  -  1
) ) )
86 uzss 11708 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( ZZ>= `  M )  C_  ( ZZ>=
`  ( M  - 
1 ) ) )
8785, 86syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ZZ>= `  M )  C_  ( ZZ>= `  ( M  -  1 ) ) )
8861nnzd 11481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  ZZ )
89 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  ( 1 ... ( ( 2nd `  T
)  -  1 ) )  ->  M  <_  ( ( 2nd `  T
)  -  1 ) )
9040, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  <_  ( ( 2nd `  T )  - 
1 ) )
9162, 24, 26, 90, 35letrd 10194 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  <_  N )
92 eluz2 11693 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
9388, 23, 91, 92syl3anbrc 1246 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
9487, 93sseldd 3604 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  -  1
) ) )
95 fzsplit2 12366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( M  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... N ) ) )
9677, 94, 95syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( ( M  -  1 )  +  1 ) ... N ) ) )
9774oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( M  -  1 )  +  1 ) ... N
)  =  ( M ... N ) )
9897uneq2d 3767 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( M  -  1 ) )  u.  ( M ... N ) ) )
9996, 98eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( M  -  1 ) )  u.  ( M ... N ) ) )
10099imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  u.  ( M ... N
) ) ) )
101 imaundi 5545 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( M  -  1 ) )  u.  ( M ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
102100, 101syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) ) )
103 f1ofo 6144 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
10413, 103syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
105 foima 6120 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
106104, 105syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
107102, 106eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  ( 1 ... N ) )
108107fneq2d 5982 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N ) ) )
10971, 108mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N ) )
110109adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
111 ovexd 6680 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( 1 ... N )  e.  _V )
112 inidm 3822 . . . . . . . . . 10  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
113 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  =  ( ( 1st `  ( 1st `  T ) ) `  n ) )
114 imaundi 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) "
( { M }  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " { M } )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
115 fzpred 12389 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( { M }  u.  ( ( M  + 
1 ) ... N
) ) )
11693, 115syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M ... N
)  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
117116imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( { M }  u.  ( ( M  +  1 ) ... N ) ) ) )
118 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
11913, 118syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
120 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  M  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  =  ( ( 2nd `  ( 1st `  T
) ) " { M } ) )
121119, 41, 120syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  =  ( ( 2nd `  ( 1st `  T ) )
" { M }
) )
122121uneq1d 3766 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) " { M } )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
123114, 117, 1223eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  =  ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
124123xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  X.  { 0 } ) )
125 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )
126124, 125syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) )
127126uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
128 un12 3771 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
129127, 128syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
130129fveq1d 6193 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
131130ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) ) `
 n ) )
132 fnconstg 6093 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )
13351, 132ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )
13450, 133pm3.2i 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
135 imain 5974 . . . . . . . . . . . . . . . . 17  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... ( M  -  1 ) )  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
13657, 135syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
13779nn0red 11352 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  -  1 )  e.  RR )
138 peano2re 10209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
13962, 138syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  RR )
14062ltp1d 10954 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  <  ( M  +  1 ) )
141137, 62, 139, 63, 140lttrd 10198 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  -  1 )  <  ( M  +  1 ) )
142 fzdisj 12368 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  -  1 )  <  ( M  + 
1 )  ->  (
( 1 ... ( M  -  1 ) )  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
143141, 142syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
144143imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
145144, 67syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
146136, 145eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
147 fnun 5997 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
148134, 146, 147sylancr 695 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
149 imaundi 5545 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( M  -  1 ) )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
150 imadif 5973 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... N
)  \  { M } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " { M } ) ) )
15157, 150syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { M } ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... N
) )  \  (
( 2nd `  ( 1st `  T ) )
" { M }
) ) )
152 fzsplit 12367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )
15341, 152syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) ) )
154153difeq1d 3727 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1 ... N )  \  { M } )  =  ( ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) )  \  { M } ) )
155 difundir 3880 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1 ... M
)  u.  ( ( M  +  1 ) ... N ) ) 
\  { M }
)  =  ( ( ( 1 ... M
)  \  { M } )  u.  (
( ( M  + 
1 ) ... N
)  \  { M } ) )
156 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  M  e.  ( ZZ>= `  ( M  -  1 ) ) )  ->  ( 1 ... M )  =  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... M ) ) )
15777, 85, 156syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 1 ... M
)  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( ( M  -  1 )  +  1 ) ... M ) ) )
15874oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( ( M  -  1 )  +  1 ) ... M
)  =  ( M ... M ) )
159 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
16088, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( M ... M
)  =  { M } )
161158, 160eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( ( M  -  1 )  +  1 ) ... M
)  =  { M } )
162161uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... M ) )  =  ( ( 1 ... ( M  -  1 ) )  u.  { M }
) )
163157, 162eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 1 ... M
)  =  ( ( 1 ... ( M  -  1 ) )  u.  { M }
) )
164163difeq1d 3727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1 ... M )  \  { M } )  =  ( ( ( 1 ... ( M  -  1 ) )  u.  { M } )  \  { M } ) )
165 difun2 4048 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1 ... ( M  -  1 ) )  u.  { M } )  \  { M } )  =  ( ( 1 ... ( M  -  1 ) )  \  { M } )
166137, 62ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( M  - 
1 )  <  M  <->  -.  M  <_  ( M  -  1 ) ) )
16763, 166mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  -.  M  <_  ( M  -  1 ) )
168 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  ( 1 ... ( M  -  1 ) )  ->  M  <_  ( M  -  1 ) )
169167, 168nsyl 135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  -.  M  e.  ( 1 ... ( M  -  1 ) ) )
170 difsn 4328 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  M  e.  ( 1 ... ( M  - 
1 ) )  -> 
( ( 1 ... ( M  -  1 ) )  \  { M } )  =  ( 1 ... ( M  -  1 ) ) )
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  \  { M } )  =  ( 1 ... ( M  -  1 ) ) )
172165, 171syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( 1 ... ( M  - 
1 ) )  u. 
{ M } ) 
\  { M }
)  =  ( 1 ... ( M  - 
1 ) ) )
173164, 172eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 1 ... M )  \  { M } )  =  ( 1 ... ( M  -  1 ) ) )
17462, 139ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( M  <  ( M  +  1 )  <->  -.  ( M  +  1 )  <_  M )
)
175140, 174mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  -.  ( M  + 
1 )  <_  M
)
176 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  M )
177175, 176nsyl 135 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  M  e.  ( ( M  +  1 ) ... N ) )
178 difsn 4328 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  M  e.  ( ( M  +  1 ) ... N )  -> 
( ( ( M  +  1 ) ... N )  \  { M } )  =  ( ( M  +  1 ) ... N ) )
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( M  +  1 ) ... N )  \  { M } )  =  ( ( M  +  1 ) ... N ) )
180173, 179uneq12d 3768 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( 1 ... M )  \  { M } )  u.  ( ( ( M  +  1 ) ... N )  \  { M } ) )  =  ( ( 1 ... ( M  -  1 ) )  u.  (
( M  +  1 ) ... N ) ) )
181155, 180syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) )  \  { M } )  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( M  +  1 ) ... N ) ) )
182154, 181eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... N )  \  { M } )  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( M  +  1 ) ... N ) ) )
183182imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { M } ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... ( M  -  1 ) )  u.  ( ( M  +  1 ) ... N ) ) ) )
184121eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" { M }
)  =  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) } )
185106, 184difeq12d 3729 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " { M } ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
186151, 183, 1853eqtr3d 2664 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
187149, 186syl5eqr 2670 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
188187fneq2d 5982 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) ) )
189148, 188mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
190 eldifsn 4317 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  M
) } )  <->  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
191190biimpri 218 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( 1 ... N )  /\  n  =/=  ( ( 2nd `  ( 1st `  T
) ) `  M
) )  ->  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
192191ancoms 469 . . . . . . . . . . . . 13  |-  ( ( n  =/=  ( ( 2nd `  ( 1st `  T ) ) `  M )  /\  n  e.  ( 1 ... N
) )  ->  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
193 disjdif 4040 . . . . . . . . . . . . . 14  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  i^i  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  M
) } ) )  =  (/)
194 fnconstg 6093 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )
19551, 194ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }
196 fvun2 6270 . . . . . . . . . . . . . . 15  |-  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  /\  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
197195, 196mp3an1 1411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
198193, 197mpanr1 719 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
199189, 192, 198syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M )  /\  n  e.  ( 1 ... N ) ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
200199anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
201131, 200eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
20247, 110, 111, 111, 112, 113, 201ofval 6906 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
203 fnconstg 6093 . . . . . . . . . . . . . . 15  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) )
20448, 203ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )
205204, 133pm3.2i 471 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
206 imain 5974 . . . . . . . . . . . . . . 15  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
20757, 206syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
208 fzdisj 12368 . . . . . . . . . . . . . . . . 17  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
209140, 208syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
210209imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
211210, 67syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
212207, 211eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
213 fnun 5997 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
214205, 212, 213sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
215153imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) ) )
216 imaundi 5545 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
217215, 216syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
218217, 106eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
219218fneq2d 5982 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) ) )
220214, 219mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) )
221220adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
222 imaundi 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( M  -  1 ) )  u.  { M } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " { M } ) )
223163imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  u. 
{ M } ) ) )
224121uneq2d 3767 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  u.  (
( 2nd `  ( 1st `  T ) )
" { M }
) ) )
225222, 223, 2243eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) )
226225xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )  X. 
{ 1 } ) )
227 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )
228226, 227syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) ) )
229228uneq1d 3766 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
230 un23 3772 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )
231230equncomi 3759 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) )
232229, 231syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
233232fveq1d 6193 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
234233ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) ) `
 n ) )
235 fnconstg 6093 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
1 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )
23648, 235ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }
237 fvun2 6270 . . . . . . . . . . . . . . 15  |-  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  /\  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
238236, 237mp3an1 1411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
239193, 238mpanr1 719 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
240189, 192, 239syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M )  /\  n  e.  ( 1 ... N ) ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
241240anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
242234, 241eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
24347, 221, 111, 111, 112, 113, 242ofval 6906 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
244202, 243eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
245244an32s 846 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
246245anasss 679 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
247 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
248247breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
249248ifbid 4108 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
250249csbeq1d 3540 . . . . . . . . . . . . . . 15  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
251 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
252251fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
253251fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
254253imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
255254xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
256253imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
257256xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
258255, 257uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
259252, 258oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
260259csbeq2dv 3992 . . . . . . . . . . . . . . 15  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
261250, 260eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
262261mpteq2dv 4745 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
263262eqeq2d 2632 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
264263, 3elrab2 3366 . . . . . . . . . . 11  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
265264simprbi 480 . . . . . . . . . 10  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
2661, 265syl 17 . . . . . . . . 9  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
267 breq1 4656 . . . . . . . . . . . . 13  |-  ( y  =  ( M  - 
1 )  ->  (
y  <  ( 2nd `  T )  <->  ( M  -  1 )  < 
( 2nd `  T
) ) )
268 id 22 . . . . . . . . . . . . 13  |-  ( y  =  ( M  - 
1 )  ->  y  =  ( M  - 
1 ) )
269267, 268ifbieq1d 4109 . . . . . . . . . . . 12  |-  ( y  =  ( M  - 
1 )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( ( M  -  1 )  <  ( 2nd `  T
) ,  ( M  -  1 ) ,  ( y  +  1 ) ) )
27025ltm1d 10956 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  T
)  -  1 )  <  ( 2nd `  T
) )
27162, 24, 25, 90, 270lelttrd 10195 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  <  ( 2nd `  T ) )
272137, 62, 25, 63, 271lttrd 10198 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  -  1 )  <  ( 2nd `  T ) )
273272iftrued 4094 . . . . . . . . . . . 12  |-  ( ph  ->  if ( ( M  -  1 )  < 
( 2nd `  T
) ,  ( M  -  1 ) ,  ( y  +  1 ) )  =  ( M  -  1 ) )
274269, 273sylan9eqr 2678 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  ( M  - 
1 ) )
275274csbeq1d 3540 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ ( M  -  1
)  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
276 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( M  - 
1 )  ->  (
1 ... j )  =  ( 1 ... ( M  -  1 ) ) )
277276imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( M  - 
1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) ) )
278277xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  ( M  - 
1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } ) )
279278adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } ) )
280 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( M  - 
1 )  ->  (
j  +  1 )  =  ( ( M  -  1 )  +  1 ) )
281280, 74sylan9eqr 2678 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
j  +  1 )  =  M )
282281oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( j  +  1 ) ... N )  =  ( M ... N ) )
283282imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
284283xpeq1d 5138 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) )
285279, 284uneq12d 3768 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) )
286285oveq2d 6666 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
28779, 286csbied 3560 . . . . . . . . . . 11  |-  ( ph  ->  [_ ( M  - 
1 )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
288287adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ ( M  -  1 )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
289275, 288eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
290 1red 10055 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  RR )
29162, 26, 290, 91lesub1dd 10643 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  <_  ( N  -  1 ) )
292 elfz2nn0 12431 . . . . . . . . . 10  |-  ( ( M  -  1 )  e.  ( 0 ... ( N  -  1 ) )  <->  ( ( M  -  1 )  e.  NN0  /\  ( N  -  1 )  e.  NN0  /\  ( M  -  1 )  <_  ( N  - 
1 ) ) )
29379, 29, 291, 292syl3anbrc 1246 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) )
294 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
295266, 289, 293, 294fvmptd 6288 . . . . . . . 8  |-  ( ph  ->  ( F `  ( M  -  1 ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) )
296295fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
297296adantr 481 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( ( F `  ( M  -  1 ) ) `
 n )  =  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  n ) )
298 breq1 4656 . . . . . . . . . . . . 13  |-  ( y  =  M  ->  (
y  <  ( 2nd `  T )  <->  M  <  ( 2nd `  T ) ) )
299 id 22 . . . . . . . . . . . . 13  |-  ( y  =  M  ->  y  =  M )
300298, 299ifbieq1d 4109 . . . . . . . . . . . 12  |-  ( y  =  M  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( M  <  ( 2nd `  T
) ,  M , 
( y  +  1 ) ) )
301271iftrued 4094 . . . . . . . . . . . 12  |-  ( ph  ->  if ( M  < 
( 2nd `  T
) ,  M , 
( y  +  1 ) )  =  M )
302300, 301sylan9eqr 2678 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  M )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  M )
303302csbeq1d 3540 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  M )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
304 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
1 ... j )  =  ( 1 ... M
) )
305304imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
306305xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) )
307 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  M  ->  (
j  +  1 )  =  ( M  + 
1 ) )
308307oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( j  +  1 ) ... N )  =  ( ( M  +  1 ) ... N ) )
309308imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
310309xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )
311306, 310uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( j  =  M  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
312311oveq2d 6666 . . . . . . . . . . . . 13  |-  ( j  =  M  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
313312adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  =  M )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
31440, 313csbied 3560 . . . . . . . . . . 11  |-  ( ph  ->  [_ M  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
315314adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  M )  ->  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
316303, 315eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  y  =  M )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
31729nn0zd 11480 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
31825, 26, 290, 34lesub1dd 10643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2nd `  T
)  -  1 )  <_  ( N  - 
1 ) )
319 eluz2 11693 . . . . . . . . . . . . 13  |-  ( ( N  -  1 )  e.  ( ZZ>= `  (
( 2nd `  T
)  -  1 ) )  <->  ( ( ( 2nd `  T )  -  1 )  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  ( ( 2nd `  T )  -  1 )  <_ 
( N  -  1 ) ) )
32021, 317, 318, 319syl3anbrc 1246 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= `  ( ( 2nd `  T
)  -  1 ) ) )
321 fzss2 12381 . . . . . . . . . . . 12  |-  ( ( N  -  1 )  e.  ( ZZ>= `  (
( 2nd `  T
)  -  1 ) )  ->  ( 1 ... ( ( 2nd `  T )  -  1 ) )  C_  (
1 ... ( N  - 
1 ) ) )
322320, 321syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... (
( 2nd `  T
)  -  1 ) )  C_  ( 1 ... ( N  - 
1 ) ) )
323 1eluzge0 11732 . . . . . . . . . . . 12  |-  1  e.  ( ZZ>= `  0 )
324 fzss1 12380 . . . . . . . . . . . 12  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( N  - 
1 ) )  C_  ( 0 ... ( N  -  1 ) ) )
325323, 324ax-mp 5 . . . . . . . . . . 11  |-  ( 1 ... ( N  - 
1 ) )  C_  ( 0 ... ( N  -  1 ) )
326322, 325syl6ss 3615 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... (
( 2nd `  T
)  -  1 ) )  C_  ( 0 ... ( N  - 
1 ) ) )
327326, 40sseldd 3604 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( 0 ... ( N  - 
1 ) ) )
328 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
329266, 316, 327, 328fvmptd 6288 . . . . . . . 8  |-  ( ph  ->  ( F `  M
)  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
330329fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  M ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
331330adantr 481 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( ( F `  M ) `  n )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
332246, 297, 3313eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( ( F `  ( M  -  1 ) ) `
 n )  =  ( ( F `  M ) `  n
) )
333332expr 643 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  =/=  ( ( 2nd `  ( 1st `  T ) ) `  M )  ->  (
( F `  ( M  -  1 ) ) `  n )  =  ( ( F `
 M ) `  n ) ) )
334333necon1d 2816 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( F `  ( M  -  1
) ) `  n
)  =/=  ( ( F `  M ) `
 n )  ->  n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
) ) )
335 elmapi 7879 . . . . . . . . . . 11  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
33644, 335syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
337336, 42ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  ( 0..^ K ) )
338 elfzonn0 12512 . . . . . . . . 9  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  ( 0..^ K )  -> 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  NN0 )
339337, 338syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  NN0 )
340339nn0red 11352 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  RR )
341340ltp1d 10954 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  <  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  +  1 ) )
342340, 341ltned 10173 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =/=  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  +  1 ) )
343295fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
344 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  e.  _V )
345 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
346 fzss1 12380 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ZZ>= `  1
)  ->  ( M ... N )  C_  (
1 ... N ) )
34776, 346syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ... N
)  C_  ( 1 ... N ) )
348 eluzfz1 12348 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
34993, 348syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( M ... N ) )
350 fnfvima 6496 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  ( M ... N )  C_  ( 1 ... N
)  /\  M  e.  ( M ... N ) )  ->  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) ) )
351119, 347, 349, 350syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
352 fvun2 6270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
35350, 53, 352mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
35469, 351, 353syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
35551fvconst2 6469 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  0 )
356351, 355syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  0 )
357354, 356eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  0 )
358357adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  0 )
35946, 109, 344, 344, 112, 345, 358ofval 6906 . . . . . . . 8  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  0 ) )
36042, 359mpdan 702 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  0 ) )
361339nn0cnd 11353 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  CC )
362361addid1d 10236 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  0 )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) ) )
363343, 360, 3623eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
364329fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  M ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
365 fzss2 12381 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1 ... M )  C_  ( 1 ... N
) )
36693, 365syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... M
)  C_  ( 1 ... N ) )
367 elfz1end 12371 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
36861, 367sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( 1 ... M ) )
369 fnfvima 6496 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
1 ... M )  C_  ( 1 ... N
)  /\  M  e.  ( 1 ... M
) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
370119, 366, 368, 369syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
371 fvun1 6269 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
372204, 133, 371mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
373212, 370, 372syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
37448fvconst2 6469 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  1 )
375370, 374syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  1 )
376373, 375eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  1 )
377376adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  1 )
37846, 220, 344, 344, 112, 345, 377ofval 6906 . . . . . . . 8  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  1 ) )
37942, 378mpdan 702 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  1 ) )
380364, 379eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( F `  M ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  +  1 ) )
381342, 363, 3803netr4d 2871 . . . . 5  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =/=  ( ( F `
 M ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
382 fveq2 6191 . . . . . 6  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
)  ->  ( ( F `  ( M  -  1 ) ) `
 n )  =  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
383 fveq2 6191 . . . . . 6  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
)  ->  ( ( F `  M ) `  n )  =  ( ( F `  M
) `  ( ( 2nd `  ( 1st `  T
) ) `  M
) ) )
384382, 383neeq12d 2855 . . . . 5  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
)  ->  ( (
( F `  ( M  -  1 ) ) `  n )  =/=  ( ( F `
 M ) `  n )  <->  ( ( F `  ( M  -  1 ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =/=  (
( F `  M
) `  ( ( 2nd `  ( 1st `  T
) ) `  M
) ) ) )
385381, 384syl5ibrcom 237 . . . 4  |-  ( ph  ->  ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 M )  -> 
( ( F `  ( M  -  1
) ) `  n
)  =/=  ( ( F `  M ) `
 n ) ) )
386385adantr 481 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  =  ( ( 2nd `  ( 1st `  T ) ) `  M )  ->  (
( F `  ( M  -  1 ) ) `  n )  =/=  ( ( F `
 M ) `  n ) ) )
387334, 386impbid 202 . 2  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( F `  ( M  -  1
) ) `  n
)  =/=  ( ( F `  M ) `
 n )  <->  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
38842, 387riota5 6637 1  |-  ( ph  ->  ( iota_ n  e.  ( 1 ... N ) ( ( F `  ( M  -  1
) ) `  n
)  =/=  ( ( F `  M ) `
 n ) )  =  ( ( 2nd `  ( 1st `  T
) ) `  M
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   iota_crio 6610  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem8  33417
  Copyright terms: Public domain W3C validator