Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem7 Structured version   Visualization version   Unicode version

Theorem poimirlem7 33416
Description: Lemma for poimir 33442, similar to poimirlem6 33415, but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem9.1  |-  ( ph  ->  T  e.  S )
poimirlem9.2  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
poimirlem7.3  |-  ( ph  ->  M  e.  ( ( ( ( 2nd `  T
)  +  1 )  +  1 ) ... N ) )
Assertion
Ref Expression
poimirlem7  |-  ( ph  ->  ( iota_ n  e.  ( 1 ... N ) ( ( F `  ( M  -  2
) ) `  n
)  =/=  ( ( F `  ( M  -  1 ) ) `
 n ) )  =  ( ( 2nd `  ( 1st `  T
) ) `  M
) )
Distinct variable groups:    f, j, n, t, y    ph, j, n, y    j, F, n, y    j, M, n, y    j, N, n, y    T, j, n, y    ph, t    f, K, j, n, t    f, M, t    f, N, t    T, f    f, F, t   
t, T    S, j, n, t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem7
StepHypRef Expression
1 poimirlem9.1 . . . . . . . 8  |-  ( ph  ->  T  e.  S )
2 elrabi 3359 . . . . . . . . 9  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
3 poimirlem22.s . . . . . . . . 9  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
42, 3eleq2s 2719 . . . . . . . 8  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
51, 4syl 17 . . . . . . 7  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
6 xp1st 7198 . . . . . . 7  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
75, 6syl 17 . . . . . 6  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
8 xp2nd 7199 . . . . . 6  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
97, 8syl 17 . . . . 5  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
10 fvex 6201 . . . . . 6  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
11 f1oeq1 6127 . . . . . 6  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
1210, 11elab 3350 . . . . 5  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
139, 12sylib 208 . . . 4  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
14 f1of 6137 . . . 4  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) --> ( 1 ... N
) )
1513, 14syl 17 . . 3  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
16 poimirlem9.2 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
17 elfznn 12370 . . . . . . . . 9  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  e.  NN )
1816, 17syl 17 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  T
)  e.  NN )
1918peano2nnd 11037 . . . . . . 7  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  e.  NN )
2019peano2nnd 11037 . . . . . 6  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  +  1 )  e.  NN )
21 nnuz 11723 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2220, 21syl6eleq 2711 . . . . 5  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
23 fzss1 12380 . . . . 5  |-  ( ( ( ( 2nd `  T
)  +  1 )  +  1 )  e.  ( ZZ>= `  1 )  ->  ( ( ( ( 2nd `  T )  +  1 )  +  1 ) ... N
)  C_  ( 1 ... N ) )
2422, 23syl 17 . . . 4  |-  ( ph  ->  ( ( ( ( 2nd `  T )  +  1 )  +  1 ) ... N
)  C_  ( 1 ... N ) )
25 poimirlem7.3 . . . 4  |-  ( ph  ->  M  e.  ( ( ( ( 2nd `  T
)  +  1 )  +  1 ) ... N ) )
2624, 25sseldd 3604 . . 3  |-  ( ph  ->  M  e.  ( 1 ... N ) )
2715, 26ffvelrnd 6360 . 2  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( 1 ... N
) )
28 xp1st 7198 . . . . . . . . . . . . 13  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
297, 28syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
30 elmapfn 7880 . . . . . . . . . . . 12  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
3129, 30syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
3231adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
33 1ex 10035 . . . . . . . . . . . . . . 15  |-  1  e.  _V
34 fnconstg 6093 . . . . . . . . . . . . . . 15  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) ) )
3533, 34ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )
36 c0ex 10034 . . . . . . . . . . . . . . 15  |-  0  e.  _V
37 fnconstg 6093 . . . . . . . . . . . . . . 15  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )
3836, 37ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )
3935, 38pm3.2i 471 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
40 dff1o3 6143 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
4140simprbi 480 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
4213, 41syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
43 imain 5974 . . . . . . . . . . . . . . 15  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... ( M  -  1 ) )  i^i  ( M ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )
4442, 43syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( M ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) ) )
45 elfzelz 12342 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( ( ( ( 2nd `  T
)  +  1 )  +  1 ) ... N )  ->  M  e.  ZZ )
4625, 45syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ZZ )
4746zred 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  RR )
4847ltm1d 10956 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  1 )  <  M )
49 fzdisj 12368 . . . . . . . . . . . . . . . . 17  |-  ( ( M  -  1 )  <  M  ->  (
( 1 ... ( M  -  1 ) )  i^i  ( M ... N ) )  =  (/) )
5048, 49syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  i^i  ( M ... N ) )  =  (/) )
5150imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( M ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
52 ima0 5481 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
5351, 52syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( M ... N
) ) )  =  (/) )
5444, 53eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  (/) )
55 fnun 5997 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  (/) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )
5639, 54, 55sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )
5746zcnd 11483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  CC )
58 npcan1 10455 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  CC  ->  (
( M  -  1 )  +  1 )  =  M )
5957, 58syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  =  M )
60 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  1  e.  RR )
6120nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  +  1 )  e.  RR )
6219nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  e.  RR )
6319nnge1d 11063 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  1  <_  ( ( 2nd `  T )  +  1 ) )
6462ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  <  ( ( ( 2nd `  T )  +  1 )  +  1 ) )
6560, 62, 61, 63, 64lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  1  <  ( ( ( 2nd `  T
)  +  1 )  +  1 ) )
66 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( M  e.  ( ( ( ( 2nd `  T
)  +  1 )  +  1 ) ... N )  ->  (
( ( 2nd `  T
)  +  1 )  +  1 )  <_  M )
6725, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  +  1 )  <_  M )
6860, 61, 47, 65, 67ltletrd 10197 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  1  <  M )
6960, 47, 68ltled 10185 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  1  <_  M )
70 elnnz1 11403 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  1  <_  M ) )
7146, 69, 70sylanbrc 698 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  NN )
7271, 21syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
7359, 72eqeltrd 2701 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
74 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
7546, 74syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( M  -  1 )  e.  ZZ )
76 uzid 11702 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  -  1 )  e.  ZZ  ->  ( M  -  1 )  e.  ( ZZ>= `  ( M  -  1 ) ) )
77 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  -  1 )  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( ( M  -  1 )  +  1 )  e.  ( ZZ>= `  ( M  -  1 ) ) )
7875, 76, 773syl 18 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= `  ( M  -  1
) ) )
7959, 78eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  ( ZZ>= `  ( M  -  1
) ) )
80 uzss 11708 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( ZZ>= `  M )  C_  ( ZZ>=
`  ( M  - 
1 ) ) )
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ZZ>= `  M )  C_  ( ZZ>= `  ( M  -  1 ) ) )
82 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  ( ( ( ( 2nd `  T
)  +  1 )  +  1 ) ... N )  ->  N  e.  ( ZZ>= `  M )
)
8325, 82syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
8481, 83sseldd 3604 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  -  1
) ) )
85 fzsplit2 12366 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( M  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... N ) ) )
8673, 84, 85syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( ( M  -  1 )  +  1 ) ... N ) ) )
8759oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( M  -  1 )  +  1 ) ... N
)  =  ( M ... N ) )
8887uneq2d 3767 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( M  -  1 ) )  u.  ( M ... N ) ) )
8986, 88eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( M  -  1 ) )  u.  ( M ... N ) ) )
9089imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  u.  ( M ... N
) ) ) )
91 imaundi 5545 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( M  -  1 ) )  u.  ( M ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
9290, 91syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) ) )
93 f1ofo 6144 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
9413, 93syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
95 foima 6120 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
9694, 95syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
9792, 96eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  ( 1 ... N ) )
9897fneq2d 5982 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N ) ) )
9956, 98mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  Fn  (
1 ... N ) )
10099adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
101 ovexd 6680 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( 1 ... N )  e.  _V )
102 inidm 3822 . . . . . . . . . 10  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
103 eqidd 2623 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  =  ( ( 1st `  ( 1st `  T ) ) `  n ) )
104 imaundi 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) "
( { M }  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " { M } )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
105 fzpred 12389 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( { M }  u.  ( ( M  + 
1 ) ... N
) ) )
10683, 105syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M ... N
)  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
107106imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( { M }  u.  ( ( M  +  1 ) ... N ) ) ) )
108 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
10913, 108syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
110 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  M  e.  ( 1 ... N
) )  ->  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  =  ( ( 2nd `  ( 1st `  T
) ) " { M } ) )
111109, 26, 110syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  =  ( ( 2nd `  ( 1st `  T ) )
" { M }
) )
112111uneq1d 3766 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) " { M } )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
113104, 107, 1123eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  =  ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
114113xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  X.  { 0 } ) )
115 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )
116114, 115syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) )
117116uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
118 un12 3771 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
119117, 118syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
120119fveq1d 6193 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
121120ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) ) `
 n ) )
122 fnconstg 6093 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )
12336, 122ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )
12435, 123pm3.2i 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
125 imain 5974 . . . . . . . . . . . . . . . . 17  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... ( M  -  1 ) )  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
12642, 125syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
12775zred 11482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  -  1 )  e.  RR )
128 peano2re 10209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
12947, 128syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  +  1 )  e.  RR )
13047ltp1d 10954 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  <  ( M  +  1 ) )
131127, 47, 129, 48, 130lttrd 10198 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M  -  1 )  <  ( M  +  1 ) )
132 fzdisj 12368 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  -  1 )  <  ( M  + 
1 )  ->  (
( 1 ... ( M  -  1 ) )  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
133131, 132syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
134133imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
135134, 52syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
136126, 135eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
137 fnun 5997 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
138124, 136, 137sylancr 695 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
139 imaundi 5545 . . . . . . . . . . . . . . . 16  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( M  -  1 ) )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
140 imadif 5973 . . . . . . . . . . . . . . . . . 18  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... N
)  \  { M } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " { M } ) ) )
14142, 140syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { M } ) )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... N
) )  \  (
( 2nd `  ( 1st `  T ) )
" { M }
) ) )
142 fzsplit 12367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )
14326, 142syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) ) )
144143difeq1d 3727 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1 ... N )  \  { M } )  =  ( ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) )  \  { M } ) )
145 difundir 3880 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1 ... M
)  u.  ( ( M  +  1 ) ... N ) ) 
\  { M }
)  =  ( ( ( 1 ... M
)  \  { M } )  u.  (
( ( M  + 
1 ) ... N
)  \  { M } ) )
146 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( M  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  M  e.  ( ZZ>= `  ( M  -  1 ) ) )  ->  ( 1 ... M )  =  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... M ) ) )
14773, 79, 146syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 1 ... M
)  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( ( M  -  1 )  +  1 ) ... M ) ) )
14859oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( ( M  -  1 )  +  1 ) ... M
)  =  ( M ... M ) )
149 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
15046, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( M ... M
)  =  { M } )
151148, 150eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( ( M  -  1 )  +  1 ) ... M
)  =  { M } )
152151uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  u.  (
( ( M  - 
1 )  +  1 ) ... M ) )  =  ( ( 1 ... ( M  -  1 ) )  u.  { M }
) )
153147, 152eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 1 ... M
)  =  ( ( 1 ... ( M  -  1 ) )  u.  { M }
) )
154153difeq1d 3727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1 ... M )  \  { M } )  =  ( ( ( 1 ... ( M  -  1 ) )  u.  { M } )  \  { M } ) )
155 difun2 4048 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1 ... ( M  -  1 ) )  u.  { M } )  \  { M } )  =  ( ( 1 ... ( M  -  1 ) )  \  { M } )
156127, 47ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( M  - 
1 )  <  M  <->  -.  M  <_  ( M  -  1 ) ) )
15748, 156mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  -.  M  <_  ( M  -  1 ) )
158 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( M  e.  ( 1 ... ( M  -  1 ) )  ->  M  <_  ( M  -  1 ) )
159157, 158nsyl 135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  -.  M  e.  ( 1 ... ( M  -  1 ) ) )
160 difsn 4328 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  M  e.  ( 1 ... ( M  - 
1 ) )  -> 
( ( 1 ... ( M  -  1 ) )  \  { M } )  =  ( 1 ... ( M  -  1 ) ) )
161159, 160syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 1 ... ( M  -  1 ) )  \  { M } )  =  ( 1 ... ( M  -  1 ) ) )
162155, 161syl5eq 2668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( 1 ... ( M  - 
1 ) )  u. 
{ M } ) 
\  { M }
)  =  ( 1 ... ( M  - 
1 ) ) )
163154, 162eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 1 ... M )  \  { M } )  =  ( 1 ... ( M  -  1 ) ) )
16447, 129ltnled 10184 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( M  <  ( M  +  1 )  <->  -.  ( M  +  1 )  <_  M )
)
165130, 164mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  -.  ( M  + 
1 )  <_  M
)
166 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  M )
167165, 166nsyl 135 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  M  e.  ( ( M  +  1 ) ... N ) )
168 difsn 4328 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  M  e.  ( ( M  +  1 ) ... N )  -> 
( ( ( M  +  1 ) ... N )  \  { M } )  =  ( ( M  +  1 ) ... N ) )
169167, 168syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( M  +  1 ) ... N )  \  { M } )  =  ( ( M  +  1 ) ... N ) )
170163, 169uneq12d 3768 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( 1 ... M )  \  { M } )  u.  ( ( ( M  +  1 ) ... N )  \  { M } ) )  =  ( ( 1 ... ( M  -  1 ) )  u.  (
( M  +  1 ) ... N ) ) )
171145, 170syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) )  \  { M } )  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( M  +  1 ) ... N ) ) )
172144, 171eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 1 ... N )  \  { M } )  =  ( ( 1 ... ( M  -  1 ) )  u.  ( ( M  +  1 ) ... N ) ) )
173172imaeq2d 5466 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... N )  \  { M } ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... ( M  -  1 ) )  u.  ( ( M  +  1 ) ... N ) ) ) )
174111eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" { M }
)  =  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) } )
17596, 174difeq12d 3729 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... N ) ) 
\  ( ( 2nd `  ( 1st `  T
) ) " { M } ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
176141, 173, 1753eqtr3d 2664 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  u.  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
177139, 176syl5eqr 2670 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  ( ( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
178177fneq2d 5982 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) ) )
179138, 178mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
180 eldifsn 4317 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  M
) } )  <->  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
181180biimpri 218 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( 1 ... N )  /\  n  =/=  ( ( 2nd `  ( 1st `  T
) ) `  M
) )  ->  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
182181ancoms 469 . . . . . . . . . . . . 13  |-  ( ( n  =/=  ( ( 2nd `  ( 1st `  T ) ) `  M )  /\  n  e.  ( 1 ... N
) )  ->  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )
183 disjdif 4040 . . . . . . . . . . . . . 14  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  i^i  ( ( 1 ... N )  \  { ( ( 2nd `  ( 1st `  T
) ) `  M
) } ) )  =  (/)
184 fnconstg 6093 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
0 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )
18536, 184ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }
186 fvun2 6270 . . . . . . . . . . . . . . 15  |-  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  /\  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
187185, 186mp3an1 1411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
188183, 187mpanr1 719 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
189179, 182, 188syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M )  /\  n  e.  ( 1 ... N ) ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
190189anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 0 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
191121, 190eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
19232, 100, 101, 101, 102, 103, 191ofval 6906 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
193 fnconstg 6093 . . . . . . . . . . . . . . 15  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) ) )
19433, 193ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )
195194, 123pm3.2i 471 . . . . . . . . . . . . 13  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
196 imain 5974 . . . . . . . . . . . . . . 15  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
19742, 196syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
198 fzdisj 12368 . . . . . . . . . . . . . . . . 17  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
199130, 198syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
200199imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
201200, 52syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... N
) ) )  =  (/) )
202197, 201eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/) )
203 fnun 5997 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) ) )
204195, 202, 203sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
205143imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... M )  u.  ( ( M  + 
1 ) ... N
) ) ) )
206 imaundi 5545 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
207205, 206syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) ) )
208207, 96eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
209208fneq2d 5982 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  u.  (
( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  <-> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) ) )
210204, 209mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( 1 ... N
) )
211210adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) )
212 imaundi 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... ( M  -  1 ) )  u.  { M } ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " { M } ) )
213153imaeq2d 5466 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... ( M  - 
1 ) )  u. 
{ M } ) ) )
214111uneq2d 3767 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  u.  (
( 2nd `  ( 1st `  T ) )
" { M }
) ) )
215212, 213, 2143eqtr4a 2682 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  u.  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) )
216215xpeq1d 5138 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )  X. 
{ 1 } ) )
217 xpundir 5172 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  u. 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )  X. 
{ 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )
218216, 217syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) ) )
219218uneq1d 3766 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
220 un23 3772 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )
221220equncomi 3759 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } ) )  u.  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) )
222219, 221syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
223222fveq1d 6193 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
224223ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) ) ) `
 n ) )
225 fnconstg 6093 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  _V  ->  ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  X.  {
1 } )  Fn 
{ ( ( 2nd `  ( 1st `  T
) ) `  M
) } )
22633, 225ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }
227 fvun2 6270 . . . . . . . . . . . . . . 15  |-  ( ( ( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 1 } )  Fn  { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  /\  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
228226, 227mp3an1 1411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  ( ( { ( ( 2nd `  ( 1st `  T
) ) `  M
) }  i^i  (
( 1 ... N
)  \  { (
( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  =  (/)  /\  n  e.  ( ( 1 ... N ) 
\  { ( ( 2nd `  ( 1st `  T ) ) `  M ) } ) ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
229183, 228mpanr1 719 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } )  /\  n  e.  ( ( 1 ... N )  \  {
( ( 2nd `  ( 1st `  T ) ) `
 M ) } ) )  ->  (
( ( { ( ( 2nd `  ( 1st `  T ) ) `
 M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
230179, 182, 229syl2an 494 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M )  /\  n  e.  ( 1 ... N ) ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
231230anassrs 680 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( { ( ( 2nd `  ( 1st `  T ) ) `  M ) }  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
232224, 231eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  n )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) )
23332, 211, 101, 101, 102, 103, 232ofval 6906 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 n ) ) )
234192, 233eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ph  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  /\  n  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
235234an32s 846 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  n )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
236235anasss 679 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
237 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
238237breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
239238ifbid 4108 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
240239csbeq1d 3540 . . . . . . . . . . . . . . 15  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
241 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
242241fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
243241fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
244243imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
245244xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
246243imaeq1d 5465 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
247246xpeq1d 5138 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
248245, 247uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
249242, 248oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
250249csbeq2dv 3992 . . . . . . . . . . . . . . 15  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
251240, 250eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
252251mpteq2dv 4745 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
253252eqeq2d 2632 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
254253, 3elrab2 3366 . . . . . . . . . . 11  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
255254simprbi 480 . . . . . . . . . 10  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
2561, 255syl 17 . . . . . . . . 9  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
257 breq1 4656 . . . . . . . . . . . . . 14  |-  ( y  =  ( M  - 
2 )  ->  (
y  <  ( 2nd `  T )  <->  ( M  -  2 )  < 
( 2nd `  T
) ) )
258257adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  (
y  <  ( 2nd `  T )  <->  ( M  -  2 )  < 
( 2nd `  T
) ) )
259 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( y  =  ( M  - 
2 )  ->  (
y  +  1 )  =  ( ( M  -  2 )  +  1 ) )
260 sub1m1 11284 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  CC  ->  (
( M  -  1 )  -  1 )  =  ( M  - 
2 ) )
26157, 260syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( M  - 
1 )  -  1 )  =  ( M  -  2 ) )
262261oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( M  -  1 )  - 
1 )  +  1 )  =  ( ( M  -  2 )  +  1 ) )
26375zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  -  1 )  e.  CC )
264 npcan1 10455 . . . . . . . . . . . . . . . 16  |-  ( ( M  -  1 )  e.  CC  ->  (
( ( M  - 
1 )  -  1 )  +  1 )  =  ( M  - 
1 ) )
265263, 264syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( M  -  1 )  - 
1 )  +  1 )  =  ( M  -  1 ) )
266262, 265eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M  - 
2 )  +  1 )  =  ( M  -  1 ) )
267259, 266sylan9eqr 2678 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  (
y  +  1 )  =  ( M  - 
1 ) )
268258, 267ifbieq2d 4111 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( ( M  -  2 )  <  ( 2nd `  T
) ,  y ,  ( M  -  1 ) ) )
26918nncnd 11036 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2nd `  T
)  e.  CC )
270 add1p1 11283 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  T )  e.  CC  ->  (
( ( 2nd `  T
)  +  1 )  +  1 )  =  ( ( 2nd `  T
)  +  2 ) )
271269, 270syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  +  1 )  =  ( ( 2nd `  T )  +  2 ) )
272271, 67eqbrtrrd 4677 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  T
)  +  2 )  <_  M )
27318nnred 11035 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2nd `  T
)  e.  RR )
274 2re 11090 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
275 leaddsub 10504 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  T
)  e.  RR  /\  2  e.  RR  /\  M  e.  RR )  ->  (
( ( 2nd `  T
)  +  2 )  <_  M  <->  ( 2nd `  T )  <_  ( M  -  2 ) ) )
276274, 275mp3an2 1412 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  T
)  e.  RR  /\  M  e.  RR )  ->  ( ( ( 2nd `  T )  +  2 )  <_  M  <->  ( 2nd `  T )  <_  ( M  -  2 ) ) )
277273, 47, 276syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  T )  +  2 )  <_  M  <->  ( 2nd `  T )  <_  ( M  -  2 ) ) )
27860, 47posdifd 10614 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( 1  <  M  <->  0  <  ( M  - 
1 ) ) )
27968, 278mpbid 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  <  ( M  -  1 ) )
280 elnnz 11387 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  -  1 )  e.  NN  <->  ( ( M  -  1 )  e.  ZZ  /\  0  <  ( M  -  1 ) ) )
28175, 279, 280sylanbrc 698 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( M  -  1 )  e.  NN )
282 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  -  1 )  e.  NN  ->  (
( M  -  1 )  -  1 )  e.  NN0 )
283281, 282syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( M  - 
1 )  -  1 )  e.  NN0 )
284261, 283eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  -  2 )  e.  NN0 )
285284nn0red 11352 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  -  2 )  e.  RR )
286273, 285lenltd 10183 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  T
)  <_  ( M  -  2 )  <->  -.  ( M  -  2 )  <  ( 2nd `  T
) ) )
287277, 286bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  T )  +  2 )  <_  M  <->  -.  ( M  -  2 )  <  ( 2nd `  T
) ) )
288272, 287mpbid 222 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  ( M  - 
2 )  <  ( 2nd `  T ) )
289288iffalsed 4097 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( ( M  -  2 )  < 
( 2nd `  T
) ,  y ,  ( M  -  1 ) )  =  ( M  -  1 ) )
290289adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  if ( ( M  - 
2 )  <  ( 2nd `  T ) ,  y ,  ( M  -  1 ) )  =  ( M  - 
1 ) )
291268, 290eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  ( M  - 
1 ) )
292291csbeq1d 3540 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ ( M  -  1
)  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
293 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( M  - 
1 )  ->  (
1 ... j )  =  ( 1 ... ( M  -  1 ) ) )
294293imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( M  - 
1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) ) )
295294xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  ( M  - 
1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } ) )
296295adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  X.  {
1 } ) )
297 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( M  - 
1 )  ->  (
j  +  1 )  =  ( ( M  -  1 )  +  1 ) )
298297, 59sylan9eqr 2678 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
j  +  1 )  =  M )
299298oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( j  +  1 ) ... N )  =  ( M ... N ) )
300299imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
301300xpeq1d 5138 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) )
302296, 301uneq12d 3768 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) )
303302oveq2d 6666 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  =  ( M  -  1
) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
30475, 303csbied 3560 . . . . . . . . . . 11  |-  ( ph  ->  [_ ( M  - 
1 )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
305304adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  [_ ( M  -  1 )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
306292, 305eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  y  =  ( M  -  2
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) )
307 poimir.0 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
308 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
309307, 308syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
310307nnred 11035 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  RR )
31147lem1d 10957 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M  -  1 )  <_  M )
312 elfzle2 12345 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ( ( ( 2nd `  T
)  +  1 )  +  1 ) ... N )  ->  M  <_  N )
31325, 312syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  <_  N )
314127, 47, 310, 311, 313letrd 10194 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  -  1 )  <_  N )
315127, 310, 60, 314lesub1dd 10643 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  - 
1 )  -  1 )  <_  ( N  -  1 ) )
316261, 315eqbrtrrd 4677 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  2 )  <_  ( N  -  1 ) )
317 elfz2nn0 12431 . . . . . . . . . 10  |-  ( ( M  -  2 )  e.  ( 0 ... ( N  -  1 ) )  <->  ( ( M  -  2 )  e.  NN0  /\  ( N  -  1 )  e.  NN0  /\  ( M  -  2 )  <_  ( N  - 
1 ) ) )
318284, 309, 316, 317syl3anbrc 1246 . . . . . . . . 9  |-  ( ph  ->  ( M  -  2 )  e.  ( 0 ... ( N  - 
1 ) ) )
319 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
320256, 306, 318, 319fvmptd 6288 . . . . . . . 8  |-  ( ph  ->  ( F `  ( M  -  2 ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) )
321320fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( M  -  2
) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
322321adantr 481 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( ( F `  ( M  -  2 ) ) `
 n )  =  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  n ) )
323 breq1 4656 . . . . . . . . . . . . . 14  |-  ( y  =  ( M  - 
1 )  ->  (
y  <  ( 2nd `  T )  <->  ( M  -  1 )  < 
( 2nd `  T
) ) )
324323adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  (
y  <  ( 2nd `  T )  <->  ( M  -  1 )  < 
( 2nd `  T
) ) )
325 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( y  =  ( M  - 
1 )  ->  (
y  +  1 )  =  ( ( M  -  1 )  +  1 ) )
326325, 59sylan9eqr 2678 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  (
y  +  1 )  =  M )
327324, 326ifbieq2d 4111 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  if ( ( M  -  1 )  <  ( 2nd `  T
) ,  y ,  M ) )
32862lep1d 10955 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  <_  ( ( ( 2nd `  T )  +  1 )  +  1 ) )
32962, 61, 47, 328, 67letrd 10194 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  <_  M )
330 1re 10039 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
331 leaddsub 10504 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  T
)  e.  RR  /\  1  e.  RR  /\  M  e.  RR )  ->  (
( ( 2nd `  T
)  +  1 )  <_  M  <->  ( 2nd `  T )  <_  ( M  -  1 ) ) )
332330, 331mp3an2 1412 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  T
)  e.  RR  /\  M  e.  RR )  ->  ( ( ( 2nd `  T )  +  1 )  <_  M  <->  ( 2nd `  T )  <_  ( M  -  1 ) ) )
333273, 47, 332syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  <_  M  <->  ( 2nd `  T )  <_  ( M  -  1 ) ) )
334273, 127lenltd 10183 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  T
)  <_  ( M  -  1 )  <->  -.  ( M  -  1 )  <  ( 2nd `  T
) ) )
335333, 334bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  <_  M  <->  -.  ( M  -  1 )  <  ( 2nd `  T
) ) )
336329, 335mpbid 222 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  ( M  - 
1 )  <  ( 2nd `  T ) )
337336iffalsed 4097 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( ( M  -  1 )  < 
( 2nd `  T
) ,  y ,  M )  =  M )
338337adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( ( M  - 
1 )  <  ( 2nd `  T ) ,  y ,  M )  =  M )
339327, 338eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  M )
340339csbeq1d 3540 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
341 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
1 ... j )  =  ( 1 ... M
) )
342341imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
343342xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) )
344 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  M  ->  (
j  +  1 )  =  ( M  + 
1 ) )
345344oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( j  =  M  ->  (
( j  +  1 ) ... N )  =  ( ( M  +  1 ) ... N ) )
346345imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( j  =  M  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )
347346xpeq1d 5138 . . . . . . . . . . . . . . 15  |-  ( j  =  M  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) )
348343, 347uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( j  =  M  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) )
349348oveq2d 6666 . . . . . . . . . . . . 13  |-  ( j  =  M  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
350349adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  =  M )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
35125, 350csbied 3560 . . . . . . . . . . 11  |-  ( ph  ->  [_ M  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
352351adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ M  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
353340, 352eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  y  =  ( M  -  1
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
354281nnnn0d 11351 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  e.  NN0 )
35547, 310, 60, 313lesub1dd 10643 . . . . . . . . . 10  |-  ( ph  ->  ( M  -  1 )  <_  ( N  -  1 ) )
356 elfz2nn0 12431 . . . . . . . . . 10  |-  ( ( M  -  1 )  e.  ( 0 ... ( N  -  1 ) )  <->  ( ( M  -  1 )  e.  NN0  /\  ( N  -  1 )  e.  NN0  /\  ( M  -  1 )  <_  ( N  - 
1 ) ) )
357354, 309, 355, 356syl3anbrc 1246 . . . . . . . . 9  |-  ( ph  ->  ( M  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) )
358 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  e.  _V )
359256, 353, 357, 358fvmptd 6288 . . . . . . . 8  |-  ( ph  ->  ( F `  ( M  -  1 ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) )
360359fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  n
)  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  n
) )
361360adantr 481 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( ( F `  ( M  -  1 ) ) `
 n )  =  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  n ) )
362236, 322, 3613eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  n  =/=  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )  ->  ( ( F `  ( M  -  2 ) ) `
 n )  =  ( ( F `  ( M  -  1
) ) `  n
) )
363362expr 643 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  =/=  ( ( 2nd `  ( 1st `  T ) ) `  M )  ->  (
( F `  ( M  -  2 ) ) `  n )  =  ( ( F `
 ( M  - 
1 ) ) `  n ) ) )
364363necon1d 2816 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( F `  ( M  -  2
) ) `  n
)  =/=  ( ( F `  ( M  -  1 ) ) `
 n )  ->  n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
) ) )
365 elmapi 7879 . . . . . . . . . . 11  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
36629, 365syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
367366, 27ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  ( 0..^ K ) )
368 elfzonn0 12512 . . . . . . . . 9  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  ( 0..^ K )  -> 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  NN0 )
369367, 368syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  NN0 )
370369nn0red 11352 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  RR )
371370ltp1d 10954 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  <  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  +  1 ) )
372370, 371ltned 10173 . . . . . 6  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =/=  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  +  1 ) )
373320fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( M  -  2
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
374 ovexd 6680 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  e.  _V )
375 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
376 fzss1 12380 . . . . . . . . . . . . . 14  |-  ( M  e.  ( ZZ>= `  1
)  ->  ( M ... N )  C_  (
1 ... N ) )
37772, 376syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ... N
)  C_  ( 1 ... N ) )
378 eluzfz1 12348 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
37983, 378syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( M ... N ) )
380 fnfvima 6496 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  ( M ... N )  C_  ( 1 ... N
)  /\  M  e.  ( M ... N ) )  ->  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) ) )
381109, 377, 379, 380syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )
382 fvun2 6270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... ( M  -  1 ) ) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
38335, 38, 382mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( M  - 
1 ) ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
38454, 381, 383syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " ( M ... N ) )  X.  { 0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
38536fvconst2 6469 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( M ... N ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  0 )
386381, 385syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  0 )
387384, 386eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  0 )
388387adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  0 )
38931, 99, 374, 374, 102, 375, 388ofval 6906 . . . . . . . 8  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  0 ) )
39027, 389mpdan 702 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( M  -  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( M ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  0 ) )
391369nn0cnd 11353 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  e.  CC )
392391addid1d 10236 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  0 )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) ) )
393373, 390, 3923eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( F `  ( M  -  2
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
394359fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
395 fzss2 12381 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1 ... M )  C_  ( 1 ... N
) )
39683, 395syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... M
)  C_  ( 1 ... N ) )
397 elfz1end 12371 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
39871, 397sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( 1 ... M ) )
399 fnfvima 6496 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
1 ... M )  C_  ( 1 ... N
)  /\  M  e.  ( 1 ... M
) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
400109, 396, 398, 399syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )
401 fvun1 6269 . . . . . . . . . . . . 13  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( M  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
402194, 123, 401mp3an12 1414 . . . . . . . . . . . 12  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( M  +  1 ) ... N ) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
403202, 400, 402syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... M ) )  X.  { 1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) )
40433fvconst2 6469 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 M )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  1 )
405400, 404syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... M
) )  X.  {
1 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  =  1 )
406403, 405eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  1 )
407406adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =  1 )
40831, 210, 374, 374, 102, 375, 407ofval 6906 . . . . . . . 8  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  M
)  e.  ( 1 ... N ) )  ->  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  1 ) )
40927, 408mpdan 702 . . . . . . 7  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... M ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( M  + 
1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) )  =  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  +  1 ) )
410394, 409eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) )  +  1 ) )
411372, 393, 4103netr4d 2871 . . . . 5  |-  ( ph  ->  ( ( F `  ( M  -  2
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) )  =/=  ( ( F `
 ( M  - 
1 ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
412 fveq2 6191 . . . . . 6  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
)  ->  ( ( F `  ( M  -  2 ) ) `
 n )  =  ( ( F `  ( M  -  2
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
413 fveq2 6191 . . . . . 6  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
)  ->  ( ( F `  ( M  -  1 ) ) `
 n )  =  ( ( F `  ( M  -  1
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 M ) ) )
414412, 413neeq12d 2855 . . . . 5  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  M
)  ->  ( (
( F `  ( M  -  2 ) ) `  n )  =/=  ( ( F `
 ( M  - 
1 ) ) `  n )  <->  ( ( F `  ( M  -  2 ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  M
) )  =/=  (
( F `  ( M  -  1 ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  M ) ) ) )
415411, 414syl5ibrcom 237 . . . 4  |-  ( ph  ->  ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 M )  -> 
( ( F `  ( M  -  2
) ) `  n
)  =/=  ( ( F `  ( M  -  1 ) ) `
 n ) ) )
416415adantr 481 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
n  =  ( ( 2nd `  ( 1st `  T ) ) `  M )  ->  (
( F `  ( M  -  2 ) ) `  n )  =/=  ( ( F `
 ( M  - 
1 ) ) `  n ) ) )
417364, 416impbid 202 . 2  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( F `  ( M  -  2
) ) `  n
)  =/=  ( ( F `  ( M  -  1 ) ) `
 n )  <->  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 M ) ) )
41827, 417riota5 6637 1  |-  ( ph  ->  ( iota_ n  e.  ( 1 ... N ) ( ( F `  ( M  -  2
) ) `  n
)  =/=  ( ( F `  ( M  -  1 ) ) `
 n ) )  =  ( ( 2nd `  ( 1st `  T
) ) `  M
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   iota_crio 6610  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem8  33417
  Copyright terms: Public domain W3C validator