![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1arithlem4 | Structured version Visualization version GIF version |
Description: Lemma for 1arith 15631. (Contributed by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
1arith.1 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
1arithlem4.2 | ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) |
1arithlem4.3 | ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) |
1arithlem4.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
1arithlem4.5 | ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) |
Ref | Expression |
---|---|
1arithlem4 | ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arithlem4.2 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) | |
2 | 1arithlem4.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) | |
3 | 2 | ffvelrnda 6359 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ ℙ) → (𝐹‘𝑦) ∈ ℕ0) |
4 | 3 | ralrimiva 2966 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
5 | 1, 4 | pcmptcl 15595 | . . . 4 ⊢ (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ)) |
6 | 5 | simprd 479 | . . 3 ⊢ (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ) |
7 | 1arithlem4.4 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 6, 7 | ffvelrnd 6360 | . 2 ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ) |
9 | 1arith.1 | . . . . . . 7 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | |
10 | 9 | 1arithlem2 15628 | . . . . . 6 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
11 | 8, 10 | sylan 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) |
12 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈ ℕ0) |
13 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℕ) |
14 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) | |
15 | fveq2 6191 | . . . . . 6 ⊢ (𝑦 = 𝑞 → (𝐹‘𝑦) = (𝐹‘𝑞)) | |
16 | 1, 12, 13, 14, 15 | pcmpt 15596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
17 | 13 | nnred 11035 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ) |
18 | prmz 15389 | . . . . . . . 8 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℤ) | |
19 | 18 | zred 11482 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℝ) |
20 | 19 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℝ) |
21 | ifid 4125 | . . . . . . 7 ⊢ if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞) | |
22 | 1arithlem4.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) | |
23 | 22 | anassrs 680 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → (𝐹‘𝑞) = 0) |
24 | 23 | ifeq2d 4105 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) |
25 | 21, 24 | syl5reqr 2671 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
26 | iftrue 4092 | . . . . . . 7 ⊢ (𝑞 ≤ 𝑁 → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | |
27 | 26 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ≤ 𝑁) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
28 | 17, 20, 25, 27 | lecasei 10143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) |
29 | 11, 16, 28 | 3eqtrrd 2661 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
30 | 29 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) |
31 | 9 | 1arithlem3 15629 | . . . . 5 ⊢ ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
32 | 8, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) |
33 | ffn 6045 | . . . . 5 ⊢ (𝐹:ℙ⟶ℕ0 → 𝐹 Fn ℙ) | |
34 | ffn 6045 | . . . . 5 ⊢ ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) | |
35 | eqfnfv 6311 | . . . . 5 ⊢ ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | |
36 | 33, 34, 35 | syl2an 494 | . . . 4 ⊢ ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
37 | 2, 32, 36 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) |
38 | 30, 37 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) |
39 | fveq2 6191 | . . . 4 ⊢ (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀‘𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁))) | |
40 | 39 | eqeq2d 2632 | . . 3 ⊢ (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝐹 = (𝑀‘𝑥) ↔ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)))) |
41 | 40 | rspcev 3309 | . 2 ⊢ (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
42 | 8, 38, 41 | syl2anc 693 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ifcif 4086 class class class wbr 4653 ↦ cmpt 4729 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 · cmul 9941 ≤ cle 10075 ℕcn 11020 ℕ0cn0 11292 seqcseq 12801 ↑cexp 12860 ℙcprime 15385 pCnt cpc 15541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-pc 15542 |
This theorem is referenced by: 1arith 15631 |
Copyright terms: Public domain | W3C validator |