MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arithlem4 Structured version   Visualization version   Unicode version

Theorem 1arithlem4 15630
Description: Lemma for 1arith 15631. (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1arithlem4.2  |-  G  =  ( y  e.  NN  |->  if ( y  e.  Prime ,  ( y ^ ( F `  y )
) ,  1 ) )
1arithlem4.3  |-  ( ph  ->  F : Prime --> NN0 )
1arithlem4.4  |-  ( ph  ->  N  e.  NN )
1arithlem4.5  |-  ( (
ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )
Assertion
Ref Expression
1arithlem4  |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
Distinct variable groups:    n, p, q, x, y    F, q, x, y    M, q, x, y    ph, q,
y    n, G, p, q, x    n, N, p, q, x
Allowed substitution hints:    ph( x, n, p)    F( n, p)    G( y)    M( n, p)    N( y)

Proof of Theorem 1arithlem4
StepHypRef Expression
1 1arithlem4.2 . . . . 5  |-  G  =  ( y  e.  NN  |->  if ( y  e.  Prime ,  ( y ^ ( F `  y )
) ,  1 ) )
2 1arithlem4.3 . . . . . . 7  |-  ( ph  ->  F : Prime --> NN0 )
32ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  y  e.  Prime )  ->  ( F `  y )  e.  NN0 )
43ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. y  e.  Prime  ( F `  y )  e.  NN0 )
51, 4pcmptcl 15595 . . . 4  |-  ( ph  ->  ( G : NN --> NN  /\  seq 1 (  x.  ,  G ) : NN --> NN ) )
65simprd 479 . . 3  |-  ( ph  ->  seq 1 (  x.  ,  G ) : NN --> NN )
7 1arithlem4.4 . . 3  |-  ( ph  ->  N  e.  NN )
86, 7ffvelrnd 6360 . 2  |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `
 N )  e.  NN )
9 1arith.1 . . . . . . 7  |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p  pCnt  n ) ) )
1091arithlem2 15628 . . . . . 6  |-  ( ( (  seq 1 (  x.  ,  G ) `
 N )  e.  NN  /\  q  e. 
Prime )  ->  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
)  =  ( q 
pCnt  (  seq 1
(  x.  ,  G
) `  N )
) )
118, 10sylan 488 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
)  =  ( q 
pCnt  (  seq 1
(  x.  ,  G
) `  N )
) )
124adantr 481 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  A. y  e.  Prime  ( F `  y )  e.  NN0 )
137adantr 481 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  N  e.  NN )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  Prime )
15 fveq2 6191 . . . . . 6  |-  ( y  =  q  ->  ( F `  y )  =  ( F `  q ) )
161, 12, 13, 14, 15pcmpt 15596 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  pCnt  (  seq 1 (  x.  ,  G ) `
 N ) )  =  if ( q  <_  N ,  ( F `  q ) ,  0 ) )
1713nnred 11035 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  N  e.  RR )
18 prmz 15389 . . . . . . . 8  |-  ( q  e.  Prime  ->  q  e.  ZZ )
1918zred 11482 . . . . . . 7  |-  ( q  e.  Prime  ->  q  e.  RR )
2019adantl 482 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  RR )
21 ifid 4125 . . . . . . 7  |-  if ( q  <_  N , 
( F `  q
) ,  ( F `
 q ) )  =  ( F `  q )
22 1arithlem4.5 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )
2322anassrs 680 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  ( F `  q )  =  0 )
2423ifeq2d 4105 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  ( F `  q ) )  =  if ( q  <_  N , 
( F `  q
) ,  0 ) )
2521, 24syl5reqr 2671 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Prime )  /\  N  <_  q )  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
26 iftrue 4092 . . . . . . 7  |-  ( q  <_  N  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
2726adantl 482 . . . . . 6  |-  ( ( ( ph  /\  q  e.  Prime )  /\  q  <_  N )  ->  if ( q  <_  N ,  ( F `  q ) ,  0 )  =  ( F `
 q ) )
2817, 20, 25, 27lecasei 10143 . . . . 5  |-  ( (
ph  /\  q  e.  Prime )  ->  if (
q  <_  N , 
( F `  q
) ,  0 )  =  ( F `  q ) )
2911, 16, 283eqtrrd 2661 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) )
3029ralrimiva 2966 . . 3  |-  ( ph  ->  A. q  e.  Prime  ( F `  q )  =  ( ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) `  q )
)
3191arithlem3 15629 . . . . 5  |-  ( (  seq 1 (  x.  ,  G ) `  N )  e.  NN  ->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )
328, 31syl 17 . . . 4  |-  ( ph  ->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )
33 ffn 6045 . . . . 5  |-  ( F : Prime --> NN0  ->  F  Fn  Prime )
34 ffn 6045 . . . . 5  |-  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 
->  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  Fn  Prime )
35 eqfnfv 6311 . . . . 5  |-  ( ( F  Fn  Prime  /\  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  Fn  Prime )  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
3633, 34, 35syl2an 494 . . . 4  |-  ( ( F : Prime --> NN0  /\  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) : Prime --> NN0 )  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N ) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
372, 32, 36syl2anc 693 . . 3  |-  ( ph  ->  ( F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) )  <->  A. q  e.  Prime  ( F `  q )  =  ( ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) `  q
) ) )
3830, 37mpbird 247 . 2  |-  ( ph  ->  F  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) )
39 fveq2 6191 . . . 4  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  N )  ->  ( M `  x
)  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) )
4039eqeq2d 2632 . . 3  |-  ( x  =  (  seq 1
(  x.  ,  G
) `  N )  ->  ( F  =  ( M `  x )  <-> 
F  =  ( M `
 (  seq 1
(  x.  ,  G
) `  N )
) ) )
4140rspcev 3309 . 2  |-  ( ( (  seq 1 (  x.  ,  G ) `
 N )  e.  NN  /\  F  =  ( M `  (  seq 1 (  x.  ,  G ) `  N
) ) )  ->  E. x  e.  NN  F  =  ( M `  x ) )
428, 38, 41syl2anc 693 1  |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ifcif 4086   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   NN0cn0 11292    seqcseq 12801   ^cexp 12860   Primecprime 15385    pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  1arith  15631
  Copyright terms: Public domain W3C validator