MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1arith Structured version   Visualization version   GIF version

Theorem 1arith 15631
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith 𝑀:ℕ–1-1-onto𝑅
Distinct variable groups:   𝑒,𝑛,𝑝   𝑒,𝑀   𝑅,𝑛
Allowed substitution hints:   𝑅(𝑒,𝑝)   𝑀(𝑛,𝑝)

Proof of Theorem 1arith
Dummy variables 𝑓 𝑔 𝑘 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11386 . . . . . . 7 ℤ ∈ V
2 prmz 15389 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
32ssriv 3607 . . . . . . 7 ℙ ⊆ ℤ
41, 3ssexi 4803 . . . . . 6 ℙ ∈ V
54mptex 6486 . . . . 5 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
6 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
75, 6fnmpti 6022 . . . 4 𝑀 Fn ℕ
861arithlem3 15629 . . . . . . 7 (𝑥 ∈ ℕ → (𝑀𝑥):ℙ⟶ℕ0)
9 nn0ex 11298 . . . . . . . 8 0 ∈ V
109, 4elmap 7886 . . . . . . 7 ((𝑀𝑥) ∈ (ℕ0𝑚 ℙ) ↔ (𝑀𝑥):ℙ⟶ℕ0)
118, 10sylibr 224 . . . . . 6 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ (ℕ0𝑚 ℙ))
12 fzfi 12771 . . . . . . 7 (1...𝑥) ∈ Fin
13 ffn 6045 . . . . . . . . . 10 ((𝑀𝑥):ℙ⟶ℕ0 → (𝑀𝑥) Fn ℙ)
14 elpreima 6337 . . . . . . . . . 10 ((𝑀𝑥) Fn ℙ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
158, 13, 143syl 18 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
1661arithlem2 15628 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
1716eleq1d 2686 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ))
18 id 22 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
19 dvdsle 15032 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
202, 18, 19syl2anr 495 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞𝑥𝑞𝑥))
21 pcelnn 15574 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
2221ancoms 469 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
23 prmnn 15388 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
24 nnuz 11723 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2523, 24syl6eleq 2711 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘1))
26 nnz 11399 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
27 elfz5 12334 . . . . . . . . . . . . 13 ((𝑞 ∈ (ℤ‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2825, 26, 27syl2anr 495 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2920, 22, 283imtr4d 283 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
3017, 29sylbid 230 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
3130expimpd 629 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥)))
3215, 31sylbid 230 . . . . . . . 8 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥)))
3332ssrdv 3609 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥))
34 ssfi 8180 . . . . . . 7 (((1...𝑥) ∈ Fin ∧ ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥)) → ((𝑀𝑥) “ ℕ) ∈ Fin)
3512, 33, 34sylancr 695 . . . . . 6 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ∈ Fin)
36 cnveq 5296 . . . . . . . . 9 (𝑒 = (𝑀𝑥) → 𝑒 = (𝑀𝑥))
3736imaeq1d 5465 . . . . . . . 8 (𝑒 = (𝑀𝑥) → (𝑒 “ ℕ) = ((𝑀𝑥) “ ℕ))
3837eleq1d 2686 . . . . . . 7 (𝑒 = (𝑀𝑥) → ((𝑒 “ ℕ) ∈ Fin ↔ ((𝑀𝑥) “ ℕ) ∈ Fin))
39 1arith.2 . . . . . . 7 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
4038, 39elrab2 3366 . . . . . 6 ((𝑀𝑥) ∈ 𝑅 ↔ ((𝑀𝑥) ∈ (ℕ0𝑚 ℙ) ∧ ((𝑀𝑥) “ ℕ) ∈ Fin))
4111, 35, 40sylanbrc 698 . . . . 5 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ 𝑅)
4241rgen 2922 . . . 4 𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅
43 ffnfv 6388 . . . 4 (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅))
447, 42, 43mpbir2an 955 . . 3 𝑀:ℕ⟶𝑅
4516adantlr 751 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
4661arithlem2 15628 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4746adantll 750 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
4845, 47eqeq12d 2637 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
4948ralbidva 2985 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5061arithlem3 15629 . . . . . . 7 (𝑦 ∈ ℕ → (𝑀𝑦):ℙ⟶ℕ0)
51 ffn 6045 . . . . . . . 8 ((𝑀𝑦):ℙ⟶ℕ0 → (𝑀𝑦) Fn ℙ)
52 eqfnfv 6311 . . . . . . . 8 (((𝑀𝑥) Fn ℙ ∧ (𝑀𝑦) Fn ℙ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
5313, 51, 52syl2an 494 . . . . . . 7 (((𝑀𝑥):ℙ⟶ℕ0 ∧ (𝑀𝑦):ℙ⟶ℕ0) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
548, 50, 53syl2an 494 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
55 nnnn0 11299 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
56 nnnn0 11299 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
57 pc11 15584 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5855, 56, 57syl2an 494 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
5949, 54, 583bitr4d 300 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ 𝑥 = 𝑦))
6059biimpd 219 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦))
6160rgen2a 2977 . . 3 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)
62 dff13 6512 . . 3 (𝑀:ℕ–1-1𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)))
6344, 61, 62mpbir2an 955 . 2 𝑀:ℕ–1-1𝑅
64 eqid 2622 . . . . . 6 (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1))
65 cnveq 5296 . . . . . . . . . . . 12 (𝑒 = 𝑓𝑒 = 𝑓)
6665imaeq1d 5465 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ℕ) = (𝑓 “ ℕ))
6766eleq1d 2686 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
6867, 39elrab2 3366 . . . . . . . . 9 (𝑓𝑅 ↔ (𝑓 ∈ (ℕ0𝑚 ℙ) ∧ (𝑓 “ ℕ) ∈ Fin))
6968simplbi 476 . . . . . . . 8 (𝑓𝑅𝑓 ∈ (ℕ0𝑚 ℙ))
709, 4elmap 7886 . . . . . . . 8 (𝑓 ∈ (ℕ0𝑚 ℙ) ↔ 𝑓:ℙ⟶ℕ0)
7169, 70sylib 208 . . . . . . 7 (𝑓𝑅𝑓:ℙ⟶ℕ0)
7271ad2antrr 762 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑓:ℙ⟶ℕ0)
73 simplr 792 . . . . . . . . 9 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑦 ∈ ℝ)
74 0re 10040 . . . . . . . . 9 0 ∈ ℝ
75 ifcl 4130 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
7673, 74, 75sylancl 694 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
77 max1 12016 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
7874, 73, 77sylancr 695 . . . . . . . 8 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
79 flge0nn0 12621 . . . . . . . 8 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
8076, 78, 79syl2anc 693 . . . . . . 7 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → (⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0)
81 nn0p1nn 11332 . . . . . . 7 ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) ∈ ℕ0 → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8280, 81syl 17 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8373adantr 481 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ)
8482adantr 481 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℕ)
8584nnred 11035 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ∈ ℝ)
86 zssre 11384 . . . . . . . . . . . 12 ℤ ⊆ ℝ
873, 86sstri 3612 . . . . . . . . . . 11 ℙ ⊆ ℝ
88 simprl 794 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ)
8987, 88sseldi 3601 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ)
9076adantr 481 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
91 max2 12018 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
9274, 83, 91sylancr 695 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
93 flltp1 12601 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9490, 93syl 17 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → if(0 ≤ 𝑦, 𝑦, 0) < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
9583, 90, 85, 92, 94lelttrd 10195 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1))
96 simprr 796 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)
9783, 85, 89, 95, 96ltletrd 10197 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑦 < 𝑞)
9883, 89ltnled 10184 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
9997, 98mpbid 222 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ 𝑞𝑦)
10088biantrurd 529 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
10172adantr 481 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0)
102 ffn 6045 . . . . . . . . . . 11 (𝑓:ℙ⟶ℕ0𝑓 Fn ℙ)
103 elpreima 6337 . . . . . . . . . . 11 (𝑓 Fn ℙ → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
104101, 102, 1033syl 18 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
105100, 104bitr4d 271 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ 𝑞 ∈ (𝑓 “ ℕ)))
106 simplr 792 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
107 breq1 4656 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑦𝑞𝑦))
108107rspccv 3306 . . . . . . . . . 10 (∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦 → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
109106, 108syl 17 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
110105, 109sylbid 230 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ → 𝑞𝑦))
11199, 110mtod 189 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ¬ (𝑓𝑞) ∈ ℕ)
112101, 88ffvelrnd 6360 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) ∈ ℕ0)
113 elnn0 11294 . . . . . . . . 9 ((𝑓𝑞) ∈ ℕ0 ↔ ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
114112, 113sylib 208 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
115114ord 392 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (¬ (𝑓𝑞) ∈ ℕ → (𝑓𝑞) = 0))
116111, 115mpd 15 . . . . . 6 ((((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ ((⌊‘if(0 ≤ 𝑦, 𝑦, 0)) + 1) ≤ 𝑞)) → (𝑓𝑞) = 0)
1176, 64, 72, 82, 1161arithlem4 15630 . . . . 5 (((𝑓𝑅𝑦 ∈ ℝ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
118 cnvimass 5485 . . . . . . 7 (𝑓 “ ℕ) ⊆ dom 𝑓
119 fdm 6051 . . . . . . . . 9 (𝑓:ℙ⟶ℕ0 → dom 𝑓 = ℙ)
12071, 119syl 17 . . . . . . . 8 (𝑓𝑅 → dom 𝑓 = ℙ)
121120, 87syl6eqss 3655 . . . . . . 7 (𝑓𝑅 → dom 𝑓 ⊆ ℝ)
122118, 121syl5ss 3614 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ⊆ ℝ)
12368simprbi 480 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ∈ Fin)
124 fimaxre2 10969 . . . . . 6 (((𝑓 “ ℕ) ⊆ ℝ ∧ (𝑓 “ ℕ) ∈ Fin) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
125122, 123, 124syl2anc 693 . . . . 5 (𝑓𝑅 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
126117, 125r19.29a 3078 . . . 4 (𝑓𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
127126rgen 2922 . . 3 𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)
128 dffo3 6374 . . 3 (𝑀:ℕ–onto𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)))
12944, 127, 128mpbir2an 955 . 2 𝑀:ℕ–onto𝑅
130 df-f1o 5895 . 2 (𝑀:ℕ–1-1-onto𝑅 ↔ (𝑀:ℕ–1-1𝑅𝑀:ℕ–onto𝑅))
13163, 129, 130mpbir2an 955 1 𝑀:ℕ–1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cfl 12591  cexp 12860  cdvds 14983  cprime 15385   pCnt cpc 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542
This theorem is referenced by:  1arith2  15632  sqff1o  24908
  Copyright terms: Public domain W3C validator