Proof of Theorem 1stccn
| Step | Hyp | Ref
| Expression |
| 1 | | 1stccnp.2 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | 1stccnp.3 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | | cncnp 21084 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 5 | | 1stccn.7 |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 6 | 5 | biantrurd 529 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 7 | 4, 6 | bitr4d 271 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 8 | | 1stccnp.1 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈
1st𝜔) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈
1st𝜔) |
| 10 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 11 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 12 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 13 | 9, 10, 11, 12 | 1stccnp 21265 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 14 | 5 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) |
| 15 | 14 | biantrurd 529 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 16 | 13, 15 | bitr4d 271 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 17 | 16 | ralbidva 2985 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 18 | | ralcom4 3224 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) |
| 19 | | impexp 462 |
. . . . . . 7
⊢ (((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 20 | 19 | ralbii 2980 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 21 | | r19.21v 2960 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 22 | 20, 21 | bitri 264 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 23 | | df-ral 2917 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥(𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 24 | | lmcl 21101 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑋) |
| 25 | 1, 24 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑋) |
| 26 | 25 | ex 450 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑓(⇝𝑡‘𝐽)𝑥 → 𝑥 ∈ 𝑋)) |
| 27 | 26 | pm4.71rd 667 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑓(⇝𝑡‘𝐽)𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 28 | 27 | imbi1d 331 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 29 | | impexp 462 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 30 | 28, 29 | syl6rbb 277 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 31 | 30 | albidv 1849 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 32 | 23, 31 | syl5bb 272 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 33 | 32 | imbi2d 330 |
. . . . 5
⊢ (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 34 | 22, 33 | syl5bb 272 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 35 | 34 | albidv 1849 |
. . 3
⊢ (𝜑 → (∀𝑓∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 36 | 18, 35 | syl5bb 272 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 37 | 7, 17, 36 | 3bitrd 294 |
1
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |