| Step | Hyp | Ref
| Expression |
| 1 | | funfn 5918 |
. . 3
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 2 | | hashfn 13164 |
. . 3
⊢ (𝐹 Fn dom 𝐹 → (#‘𝐹) = (#‘dom 𝐹)) |
| 3 | 1, 2 | sylbi 207 |
. 2
⊢ (Fun
𝐹 → (#‘𝐹) = (#‘dom 𝐹)) |
| 4 | | dmfi 8244 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ Fin → dom 𝐹 ∈ Fin) |
| 5 | | hashcl 13147 |
. . . . . . . . . . 11
⊢ (dom
𝐹 ∈ Fin →
(#‘dom 𝐹) ∈
ℕ0) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Fin → (#‘dom
𝐹) ∈
ℕ0) |
| 7 | 6 | nn0red 11352 |
. . . . . . . . 9
⊢ (𝐹 ∈ Fin → (#‘dom
𝐹) ∈
ℝ) |
| 8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ Fin ∧ ¬ Rel
𝐹) → (#‘dom
𝐹) ∈
ℝ) |
| 9 | | df-rel 5121 |
. . . . . . . . . . . . 13
⊢ (Rel
𝐹 ↔ 𝐹 ⊆ (V × V)) |
| 10 | | dfss3 3592 |
. . . . . . . . . . . . 13
⊢ (𝐹 ⊆ (V × V) ↔
∀𝑥 ∈ 𝐹 𝑥 ∈ (V × V)) |
| 11 | 9, 10 | bitri 264 |
. . . . . . . . . . . 12
⊢ (Rel
𝐹 ↔ ∀𝑥 ∈ 𝐹 𝑥 ∈ (V × V)) |
| 12 | 11 | notbii 310 |
. . . . . . . . . . 11
⊢ (¬
Rel 𝐹 ↔ ¬
∀𝑥 ∈ 𝐹 𝑥 ∈ (V × V)) |
| 13 | | rexnal 2995 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
𝐹 ¬ 𝑥 ∈ (V × V) ↔ ¬
∀𝑥 ∈ 𝐹 𝑥 ∈ (V × V)) |
| 14 | 12, 13 | bitr4i 267 |
. . . . . . . . . 10
⊢ (¬
Rel 𝐹 ↔ ∃𝑥 ∈ 𝐹 ¬ 𝑥 ∈ (V × V)) |
| 15 | | dmun 5331 |
. . . . . . . . . . . . . . . 16
⊢ dom
((𝐹 ∖ {𝑥}) ∪ {𝑥}) = (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) |
| 16 | 15 | fveq2i 6194 |
. . . . . . . . . . . . . . 15
⊢
(#‘dom ((𝐹
∖ {𝑥}) ∪ {𝑥})) = (#‘(dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥})) |
| 17 | | dmsnn0 5600 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (V × V) ↔ dom
{𝑥} ≠
∅) |
| 18 | 17 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (dom
{𝑥} ≠ ∅ →
𝑥 ∈ (V ×
V)) |
| 19 | 18 | necon1bi 2822 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑥 ∈ (V × V)
→ dom {𝑥} =
∅) |
| 20 | 19 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → dom {𝑥} = ∅) |
| 21 | 20 | uneq2d 3767 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) = (dom (𝐹 ∖ {𝑥}) ∪ ∅)) |
| 22 | | un0 3967 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
(𝐹 ∖ {𝑥}) ∪ ∅) = dom (𝐹 ∖ {𝑥}) |
| 23 | 21, 22 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (dom (𝐹 ∖ {𝑥}) ∪ dom {𝑥}) = dom (𝐹 ∖ {𝑥})) |
| 24 | 23 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘(dom
(𝐹 ∖ {𝑥}) ∪ dom {𝑥})) = (#‘dom (𝐹 ∖ {𝑥}))) |
| 25 | 16, 24 | syl5eq 2668 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘dom
((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (#‘dom (𝐹 ∖ {𝑥}))) |
| 26 | | diffi 8192 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ Fin → (𝐹 ∖ {𝑥}) ∈ Fin) |
| 27 | | dmfi 8244 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∖ {𝑥}) ∈ Fin → dom (𝐹 ∖ {𝑥}) ∈ Fin) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Fin → dom (𝐹 ∖ {𝑥}) ∈ Fin) |
| 29 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
(𝐹 ∖ {𝑥}) ∈ Fin →
(#‘dom (𝐹 ∖
{𝑥})) ∈
ℕ0) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {𝑥})) ∈
ℕ0) |
| 31 | 30 | nn0red 11352 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {𝑥})) ∈
ℝ) |
| 32 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∖ {𝑥}) ∈ Fin → (#‘(𝐹 ∖ {𝑥})) ∈
ℕ0) |
| 33 | 26, 32 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Fin →
(#‘(𝐹 ∖ {𝑥})) ∈
ℕ0) |
| 34 | 33 | nn0red 11352 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin →
(#‘(𝐹 ∖ {𝑥})) ∈
ℝ) |
| 35 | | peano2re 10209 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘(𝐹 ∖
{𝑥})) ∈ ℝ →
((#‘(𝐹 ∖ {𝑥})) + 1) ∈
ℝ) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin →
((#‘(𝐹 ∖ {𝑥})) + 1) ∈
ℝ) |
| 37 | | fidomdm 8243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∖ {𝑥}) ∈ Fin → dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥})) |
| 38 | 26, 37 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Fin → dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥})) |
| 39 | | hashdom 13168 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
(𝐹 ∖ {𝑥}) ∈ Fin ∧ (𝐹 ∖ {𝑥}) ∈ Fin) → ((#‘dom (𝐹 ∖ {𝑥})) ≤ (#‘(𝐹 ∖ {𝑥})) ↔ dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥}))) |
| 40 | 28, 26, 39 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Fin → ((#‘dom
(𝐹 ∖ {𝑥})) ≤ (#‘(𝐹 ∖ {𝑥})) ↔ dom (𝐹 ∖ {𝑥}) ≼ (𝐹 ∖ {𝑥}))) |
| 41 | 38, 40 | mpbird 247 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {𝑥})) ≤ (#‘(𝐹 ∖ {𝑥}))) |
| 42 | 34 | ltp1d 10954 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin →
(#‘(𝐹 ∖ {𝑥})) < ((#‘(𝐹 ∖ {𝑥})) + 1)) |
| 43 | 31, 34, 36, 41, 42 | lelttrd 10195 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {𝑥})) < ((#‘(𝐹 ∖ {𝑥})) + 1)) |
| 44 | 43 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘dom
(𝐹 ∖ {𝑥})) < ((#‘(𝐹 ∖ {𝑥})) + 1)) |
| 45 | 25, 44 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘dom
((𝐹 ∖ {𝑥}) ∪ {𝑥})) < ((#‘(𝐹 ∖ {𝑥})) + 1)) |
| 46 | | snfi 8038 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑥} ∈ Fin |
| 47 | | incom 3805 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ({𝑥} ∩ (𝐹 ∖ {𝑥})) |
| 48 | | disjdif 4040 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑥} ∩ (𝐹 ∖ {𝑥})) = ∅ |
| 49 | 47, 48 | eqtri 2644 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ∅ |
| 50 | | hashun 13171 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∖ {𝑥}) ∈ Fin ∧ {𝑥} ∈ Fin ∧ ((𝐹 ∖ {𝑥}) ∩ {𝑥}) = ∅) → (#‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((#‘(𝐹 ∖ {𝑥})) + (#‘{𝑥}))) |
| 51 | 46, 49, 50 | mp3an23 1416 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∖ {𝑥}) ∈ Fin → (#‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((#‘(𝐹 ∖ {𝑥})) + (#‘{𝑥}))) |
| 52 | 26, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin →
(#‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((#‘(𝐹 ∖ {𝑥})) + (#‘{𝑥}))) |
| 53 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 54 | | hashsng 13159 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ V → (#‘{𝑥}) = 1) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(#‘{𝑥}) =
1 |
| 56 | 55 | oveq2i 6661 |
. . . . . . . . . . . . . . 15
⊢
((#‘(𝐹 ∖
{𝑥})) + (#‘{𝑥})) = ((#‘(𝐹 ∖ {𝑥})) + 1) |
| 57 | 52, 56 | syl6req 2673 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin →
((#‘(𝐹 ∖ {𝑥})) + 1) = (#‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))) |
| 58 | 57 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) →
((#‘(𝐹 ∖ {𝑥})) + 1) = (#‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))) |
| 59 | 45, 58 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘dom
((𝐹 ∖ {𝑥}) ∪ {𝑥})) < (#‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))) |
| 60 | | difsnid 4341 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹) |
| 61 | 60 | dmeqd 5326 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐹 → dom ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = dom 𝐹) |
| 62 | 61 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐹 → (#‘dom ((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (#‘dom 𝐹)) |
| 63 | 62 | 3ad2ant2 1083 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘dom
((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (#‘dom 𝐹)) |
| 64 | 60 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐹 → (#‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (#‘𝐹)) |
| 65 | 64 | 3ad2ant2 1083 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) →
(#‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = (#‘𝐹)) |
| 66 | 59, 63, 65 | 3brtr3d 4684 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Fin ∧ 𝑥 ∈ 𝐹 ∧ ¬ 𝑥 ∈ (V × V)) → (#‘dom
𝐹) < (#‘𝐹)) |
| 67 | 66 | rexlimdv3a 3033 |
. . . . . . . . . 10
⊢ (𝐹 ∈ Fin → (∃𝑥 ∈ 𝐹 ¬ 𝑥 ∈ (V × V) → (#‘dom
𝐹) < (#‘𝐹))) |
| 68 | 14, 67 | syl5bi 232 |
. . . . . . . . 9
⊢ (𝐹 ∈ Fin → (¬ Rel
𝐹 → (#‘dom 𝐹) < (#‘𝐹))) |
| 69 | 68 | imp 445 |
. . . . . . . 8
⊢ ((𝐹 ∈ Fin ∧ ¬ Rel
𝐹) → (#‘dom
𝐹) < (#‘𝐹)) |
| 70 | 8, 69 | gtned 10172 |
. . . . . . 7
⊢ ((𝐹 ∈ Fin ∧ ¬ Rel
𝐹) → (#‘𝐹) ≠ (#‘dom 𝐹)) |
| 71 | 70 | ex 450 |
. . . . . 6
⊢ (𝐹 ∈ Fin → (¬ Rel
𝐹 → (#‘𝐹) ≠ (#‘dom 𝐹))) |
| 72 | 71 | necon4bd 2814 |
. . . . 5
⊢ (𝐹 ∈ Fin →
((#‘𝐹) = (#‘dom
𝐹) → Rel 𝐹)) |
| 73 | 72 | imp 445 |
. . . 4
⊢ ((𝐹 ∈ Fin ∧ (#‘𝐹) = (#‘dom 𝐹)) → Rel 𝐹) |
| 74 | | 2nalexn 1755 |
. . . . . . . 8
⊢ (¬
∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥∃𝑦 ¬ ∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧)) |
| 75 | | df-ne 2795 |
. . . . . . . . . . . . 13
⊢ (𝑦 ≠ 𝑧 ↔ ¬ 𝑦 = 𝑧) |
| 76 | 75 | anbi2i 730 |
. . . . . . . . . . . 12
⊢
(((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧) ↔ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)) |
| 77 | | annim 441 |
. . . . . . . . . . . 12
⊢
(((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧)) |
| 78 | 76, 77 | bitri 264 |
. . . . . . . . . . 11
⊢
(((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧) ↔ ¬ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧)) |
| 79 | 78 | exbii 1774 |
. . . . . . . . . 10
⊢
(∃𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧) ↔ ∃𝑧 ¬ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧)) |
| 80 | | exnal 1754 |
. . . . . . . . . 10
⊢
(∃𝑧 ¬
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧)) |
| 81 | 79, 80 | bitr2i 265 |
. . . . . . . . 9
⊢ (¬
∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) |
| 82 | 81 | 2exbii 1775 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦 ¬ ∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥∃𝑦∃𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) |
| 83 | 74, 82 | bitri 264 |
. . . . . . 7
⊢ (¬
∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧) ↔ ∃𝑥∃𝑦∃𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) |
| 84 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘dom 𝐹) ∈ ℝ) |
| 85 | | 2re 11090 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
| 86 | | diffi 8192 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Fin → (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin) |
| 87 | | dmfi 8244 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin → dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin → dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin) |
| 89 | | hashcl 13147 |
. . . . . . . . . . . . . . . 16
⊢ (dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin → (#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈
ℕ0) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈
ℕ0) |
| 91 | 90 | nn0red 11352 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) |
| 92 | 91 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) |
| 93 | | readdcl 10019 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℝ ∧ (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) → (2 +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 94 | 85, 92, 93 | sylancr 695 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 95 | | hashcl 13147 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin →
(#‘𝐹) ∈
ℕ0) |
| 96 | 95 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Fin →
(#‘𝐹) ∈
ℝ) |
| 97 | 96 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘𝐹) ∈ ℝ) |
| 98 | | 1re 10039 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 99 | | readdcl 10019 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) → (1 +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 100 | 98, 91, 99 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin → (1 +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 101 | 100 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (1 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 102 | 85, 91, 93 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin → (2 +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 103 | 102 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ∈ ℝ) |
| 104 | | dmun 5331 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = (dom {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) |
| 105 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈𝑥, 𝑦〉 ∈ V |
| 106 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈𝑥, 𝑧〉 ∈ V |
| 107 | 105, 106 | prss 4351 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ↔ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ⊆ 𝐹) |
| 108 | | undif 4049 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ⊆ 𝐹 ↔ ({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = 𝐹) |
| 109 | 107, 108 | sylbb 209 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → ({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = 𝐹) |
| 110 | 109 | dmeqd 5326 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → dom ({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = dom 𝐹) |
| 111 | 104, 110 | syl5reqr 2671 |
. . . . . . . . . . . . . . . . 17
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → dom 𝐹 = (dom {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) |
| 112 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
| 113 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
| 114 | 112, 113 | dmprop 5610 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} = {𝑥, 𝑥} |
| 115 | | dfsn2 4190 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑥} = {𝑥, 𝑥} |
| 116 | 114, 115 | eqtr4i 2647 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} = {𝑥} |
| 117 | 116 | uneq1i 3763 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = ({𝑥} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) |
| 118 | 111, 117 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → dom 𝐹 = ({𝑥} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) |
| 119 | 118 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → (#‘dom 𝐹) = (#‘({𝑥} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 120 | 119 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘dom 𝐹) = (#‘({𝑥} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 121 | | hashun2 13172 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑥} ∈ Fin ∧ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin) → (#‘({𝑥} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ ((#‘{𝑥}) + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 122 | 46, 88, 121 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin →
(#‘({𝑥} ∪ dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ ((#‘{𝑥}) + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 123 | 55 | oveq1i 6660 |
. . . . . . . . . . . . . . . 16
⊢
((#‘{𝑥}) +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = (1 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) |
| 124 | 122, 123 | syl6breq 4694 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin →
(#‘({𝑥} ∪ dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (1 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 125 | 124 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘({𝑥} ∪ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (1 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 126 | 120, 125 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘dom 𝐹) ≤ (1 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 127 | | 1lt2 11194 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
| 128 | | ltadd1 10495 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) → (1 < 2
↔ (1 + (#‘dom (𝐹
∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) < (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))))) |
| 129 | 98, 85, 91, 128 | mp3an12i 1428 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin → (1 < 2
↔ (1 + (#‘dom (𝐹
∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) < (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))))) |
| 130 | 127, 129 | mpbii 223 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin → (1 +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) < (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 131 | 130 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (1 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) < (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 132 | 84, 101, 103, 126, 131 | lelttrd 10195 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘dom 𝐹) < (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 133 | | fidomdm 8243 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin → dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ≼ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) |
| 134 | 86, 133 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin → dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ≼ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) |
| 135 | | hashdom 13168 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin ∧ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin) → ((#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ≤ (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ↔ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ≼ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) |
| 136 | 88, 86, 135 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin → ((#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ≤ (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ↔ dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ≼ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) |
| 137 | 134, 136 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin → (#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ≤ (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) |
| 138 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin → (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈
ℕ0) |
| 139 | 86, 138 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Fin →
(#‘(𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈
ℕ0) |
| 140 | 139 | nn0red 11352 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Fin →
(#‘(𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) |
| 141 | | leadd2 10497 |
. . . . . . . . . . . . . . . . 17
⊢
(((#‘dom (𝐹
∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ ∧
(#‘(𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ ∧ 2 ∈
ℝ) → ((#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ≤ (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ↔ (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))))) |
| 142 | 85, 141 | mp3an3 1413 |
. . . . . . . . . . . . . . . 16
⊢
(((#‘dom (𝐹
∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ ∧
(#‘(𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ∈ ℝ) →
((#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ≤ (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ↔ (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))))) |
| 143 | 91, 140, 142 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin → ((#‘dom
(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ≤ (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) ↔ (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))))) |
| 144 | 137, 143 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Fin → (2 +
(#‘dom (𝐹 ∖
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 145 | 144 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 146 | | prfi 8235 |
. . . . . . . . . . . . . . . . 17
⊢
{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∈ Fin |
| 147 | | disjdif 4040 |
. . . . . . . . . . . . . . . . 17
⊢
({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∩ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = ∅ |
| 148 | | hashun 13171 |
. . . . . . . . . . . . . . . . 17
⊢
(({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∈ Fin ∧ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin ∧ ({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∩ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})) = ∅) →
(#‘({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = ((#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 149 | 146, 147,
148 | mp3an13 1415 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) ∈ Fin →
(#‘({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = ((#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 150 | 86, 149 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ Fin →
(#‘({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = ((#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 151 | 150 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = ((#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 152 | 109 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢
((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → (#‘({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = (#‘𝐹)) |
| 153 | 152 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘({〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉} ∪ (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = (#‘𝐹)) |
| 154 | 53, 112 | opth 4945 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉 ↔ (𝑥 = 𝑥 ∧ 𝑦 = 𝑧)) |
| 155 | 154 | simprbi 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉 → 𝑦 = 𝑧) |
| 156 | 155 | necon3i 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ≠ 𝑧 → 〈𝑥, 𝑦〉 ≠ 〈𝑥, 𝑧〉) |
| 157 | | hashprg 13182 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈𝑥, 𝑦〉 ∈ V ∧
〈𝑥, 𝑧〉 ∈ V) → (〈𝑥, 𝑦〉 ≠ 〈𝑥, 𝑧〉 ↔ (#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) = 2)) |
| 158 | 105, 106,
157 | mp2an 708 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑥, 𝑦〉 ≠ 〈𝑥, 𝑧〉 ↔ (#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) = 2) |
| 159 | 156, 158 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ≠ 𝑧 → (#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) = 2) |
| 160 | 159 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ≠ 𝑧 → ((#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 161 | 160 | ad2antll 765 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → ((#‘{〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}) + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉})))) |
| 162 | 151, 153,
161 | 3eqtr3rd 2665 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (2 + (#‘(𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) = (#‘𝐹)) |
| 163 | 145, 162 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (2 + (#‘dom (𝐹 ∖ {〈𝑥, 𝑦〉, 〈𝑥, 𝑧〉}))) ≤ (#‘𝐹)) |
| 164 | 84, 94, 97, 132, 163 | ltletrd 10197 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘dom 𝐹) < (#‘𝐹)) |
| 165 | 84, 164 | gtned 10172 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Fin ∧ ((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧)) → (#‘𝐹) ≠ (#‘dom 𝐹)) |
| 166 | 165 | ex 450 |
. . . . . . . . 9
⊢ (𝐹 ∈ Fin →
(((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧) → (#‘𝐹) ≠ (#‘dom 𝐹))) |
| 167 | 166 | exlimdv 1861 |
. . . . . . . 8
⊢ (𝐹 ∈ Fin → (∃𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧) → (#‘𝐹) ≠ (#‘dom 𝐹))) |
| 168 | 167 | exlimdvv 1862 |
. . . . . . 7
⊢ (𝐹 ∈ Fin → (∃𝑥∃𝑦∃𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) ∧ 𝑦 ≠ 𝑧) → (#‘𝐹) ≠ (#‘dom 𝐹))) |
| 169 | 83, 168 | syl5bi 232 |
. . . . . 6
⊢ (𝐹 ∈ Fin → (¬
∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧) → (#‘𝐹) ≠ (#‘dom 𝐹))) |
| 170 | 169 | necon4bd 2814 |
. . . . 5
⊢ (𝐹 ∈ Fin →
((#‘𝐹) = (#‘dom
𝐹) → ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧))) |
| 171 | 170 | imp 445 |
. . . 4
⊢ ((𝐹 ∈ Fin ∧ (#‘𝐹) = (#‘dom 𝐹)) → ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧)) |
| 172 | | dffun4 5900 |
. . . 4
⊢ (Fun
𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((〈𝑥, 𝑦〉 ∈ 𝐹 ∧ 〈𝑥, 𝑧〉 ∈ 𝐹) → 𝑦 = 𝑧))) |
| 173 | 73, 171, 172 | sylanbrc 698 |
. . 3
⊢ ((𝐹 ∈ Fin ∧ (#‘𝐹) = (#‘dom 𝐹)) → Fun 𝐹) |
| 174 | 173 | ex 450 |
. 2
⊢ (𝐹 ∈ Fin →
((#‘𝐹) = (#‘dom
𝐹) → Fun 𝐹)) |
| 175 | 3, 174 | impbid2 216 |
1
⊢ (𝐹 ∈ Fin → (Fun 𝐹 ↔ (#‘𝐹) = (#‘dom 𝐹))) |