Proof of Theorem 2lgslem3a
| Step | Hyp | Ref
| Expression |
| 1 | | 2lgslem2.n |
. . 3
⊢ 𝑁 = (((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4))) |
| 2 | | oveq1 6657 |
. . . . 5
⊢ (𝑃 = ((8 · 𝐾) + 1) → (𝑃 − 1) = (((8 · 𝐾) + 1) −
1)) |
| 3 | 2 | oveq1d 6665 |
. . . 4
⊢ (𝑃 = ((8 · 𝐾) + 1) → ((𝑃 − 1) / 2) = ((((8
· 𝐾) + 1) − 1)
/ 2)) |
| 4 | | oveq1 6657 |
. . . . 5
⊢ (𝑃 = ((8 · 𝐾) + 1) → (𝑃 / 4) = (((8 · 𝐾) + 1) / 4)) |
| 5 | 4 | fveq2d 6195 |
. . . 4
⊢ (𝑃 = ((8 · 𝐾) + 1) →
(⌊‘(𝑃 / 4)) =
(⌊‘(((8 · 𝐾) + 1) / 4))) |
| 6 | 3, 5 | oveq12d 6668 |
. . 3
⊢ (𝑃 = ((8 · 𝐾) + 1) → (((𝑃 − 1) / 2) −
(⌊‘(𝑃 / 4))) =
(((((8 · 𝐾) + 1)
− 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4)))) |
| 7 | 1, 6 | syl5eq 2668 |
. 2
⊢ (𝑃 = ((8 · 𝐾) + 1) → 𝑁 = (((((8 · 𝐾) + 1) − 1) / 2) −
(⌊‘(((8 · 𝐾) + 1) / 4)))) |
| 8 | | 8nn0 11315 |
. . . . . . . . . 10
⊢ 8 ∈
ℕ0 |
| 9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ 8 ∈ ℕ0) |
| 10 | | id 22 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℕ0) |
| 11 | 9, 10 | nn0mulcld 11356 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ (8 · 𝐾)
∈ ℕ0) |
| 12 | 11 | nn0cnd 11353 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (8 · 𝐾)
∈ ℂ) |
| 13 | | pncan1 10454 |
. . . . . . 7
⊢ ((8
· 𝐾) ∈ ℂ
→ (((8 · 𝐾) +
1) − 1) = (8 · 𝐾)) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ (((8 · 𝐾) +
1) − 1) = (8 · 𝐾)) |
| 15 | 14 | oveq1d 6665 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ ((((8 · 𝐾) +
1) − 1) / 2) = ((8 · 𝐾) / 2)) |
| 16 | | 4cn 11098 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
| 17 | | 2cn 11091 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 18 | | 4t2e8 11181 |
. . . . . . . . . . 11
⊢ (4
· 2) = 8 |
| 19 | 16, 17, 18 | mulcomli 10047 |
. . . . . . . . . 10
⊢ (2
· 4) = 8 |
| 20 | 19 | eqcomi 2631 |
. . . . . . . . 9
⊢ 8 = (2
· 4) |
| 21 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 8 = (2 · 4)) |
| 22 | 21 | oveq1d 6665 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (8 · 𝐾) = ((2
· 4) · 𝐾)) |
| 23 | 17 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 2 ∈ ℂ) |
| 24 | 16 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 4 ∈ ℂ) |
| 25 | | nn0cn 11302 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℂ) |
| 26 | 23, 24, 25 | mulassd 10063 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ ((2 · 4) · 𝐾) = (2 · (4 · 𝐾))) |
| 27 | 22, 26 | eqtrd 2656 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ (8 · 𝐾) = (2
· (4 · 𝐾))) |
| 28 | 27 | oveq1d 6665 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ ((8 · 𝐾) / 2)
= ((2 · (4 · 𝐾)) / 2)) |
| 29 | | 4nn0 11311 |
. . . . . . . . 9
⊢ 4 ∈
ℕ0 |
| 30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 4 ∈ ℕ0) |
| 31 | 30, 10 | nn0mulcld 11356 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (4 · 𝐾)
∈ ℕ0) |
| 32 | 31 | nn0cnd 11353 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ (4 · 𝐾)
∈ ℂ) |
| 33 | | 2ne0 11113 |
. . . . . . 7
⊢ 2 ≠
0 |
| 34 | 33 | a1i 11 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ 2 ≠ 0) |
| 35 | 32, 23, 34 | divcan3d 10806 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ ((2 · (4 · 𝐾)) / 2) = (4 · 𝐾)) |
| 36 | 15, 28, 35 | 3eqtrd 2660 |
. . . 4
⊢ (𝐾 ∈ ℕ0
→ ((((8 · 𝐾) +
1) − 1) / 2) = (4 · 𝐾)) |
| 37 | | 1cnd 10056 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ 1 ∈ ℂ) |
| 38 | | 4ne0 11117 |
. . . . . . . . . 10
⊢ 4 ≠
0 |
| 39 | 16, 38 | pm3.2i 471 |
. . . . . . . . 9
⊢ (4 ∈
ℂ ∧ 4 ≠ 0) |
| 40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ (4 ∈ ℂ ∧ 4 ≠ 0)) |
| 41 | | divdir 10710 |
. . . . . . . 8
⊢ (((8
· 𝐾) ∈ ℂ
∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((8
· 𝐾) + 1) / 4) =
(((8 · 𝐾) / 4) + (1
/ 4))) |
| 42 | 12, 37, 40, 41 | syl3anc 1326 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (((8 · 𝐾) +
1) / 4) = (((8 · 𝐾)
/ 4) + (1 / 4))) |
| 43 | | 8cn 11106 |
. . . . . . . . . . 11
⊢ 8 ∈
ℂ |
| 44 | 43 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ0
→ 8 ∈ ℂ) |
| 45 | | div23 10704 |
. . . . . . . . . 10
⊢ ((8
∈ ℂ ∧ 𝐾
∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((8 ·
𝐾) / 4) = ((8 / 4) ·
𝐾)) |
| 46 | 44, 25, 40, 45 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ ((8 · 𝐾) / 4)
= ((8 / 4) · 𝐾)) |
| 47 | 18 | eqcomi 2631 |
. . . . . . . . . . . . 13
⊢ 8 = (4
· 2) |
| 48 | 47 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ (8 / 4) =
((4 · 2) / 4) |
| 49 | 17, 16, 38 | divcan3i 10771 |
. . . . . . . . . . . 12
⊢ ((4
· 2) / 4) = 2 |
| 50 | 48, 49 | eqtri 2644 |
. . . . . . . . . . 11
⊢ (8 / 4) =
2 |
| 51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ0
→ (8 / 4) = 2) |
| 52 | 51 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ ((8 / 4) · 𝐾)
= (2 · 𝐾)) |
| 53 | 46, 52 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ ((8 · 𝐾) / 4)
= (2 · 𝐾)) |
| 54 | 53 | oveq1d 6665 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (((8 · 𝐾) /
4) + (1 / 4)) = ((2 · 𝐾) + (1 / 4))) |
| 55 | 42, 54 | eqtrd 2656 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ (((8 · 𝐾) +
1) / 4) = ((2 · 𝐾) +
(1 / 4))) |
| 56 | 55 | fveq2d 6195 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (⌊‘(((8 · 𝐾) + 1) / 4)) = (⌊‘((2 ·
𝐾) + (1 /
4)))) |
| 57 | | 1lt4 11199 |
. . . . . 6
⊢ 1 <
4 |
| 58 | | 2nn0 11309 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
| 59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ 2 ∈ ℕ0) |
| 60 | 59, 10 | nn0mulcld 11356 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ (2 · 𝐾)
∈ ℕ0) |
| 61 | 60 | nn0zd 11480 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (2 · 𝐾)
∈ ℤ) |
| 62 | | 1nn0 11308 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 63 | 62 | a1i 11 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ 1 ∈ ℕ0) |
| 64 | | 4nn 11187 |
. . . . . . . 8
⊢ 4 ∈
ℕ |
| 65 | 64 | a1i 11 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ 4 ∈ ℕ) |
| 66 | | adddivflid 12619 |
. . . . . . 7
⊢ (((2
· 𝐾) ∈ ℤ
∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ) → (1 < 4
↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))) |
| 67 | 61, 63, 65, 66 | syl3anc 1326 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ (1 < 4 ↔ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾))) |
| 68 | 57, 67 | mpbii 223 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (⌊‘((2 · 𝐾) + (1 / 4))) = (2 · 𝐾)) |
| 69 | 56, 68 | eqtrd 2656 |
. . . 4
⊢ (𝐾 ∈ ℕ0
→ (⌊‘(((8 · 𝐾) + 1) / 4)) = (2 · 𝐾)) |
| 70 | 36, 69 | oveq12d 6668 |
. . 3
⊢ (𝐾 ∈ ℕ0
→ (((((8 · 𝐾) +
1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = ((4 · 𝐾) − (2 · 𝐾))) |
| 71 | | 2t2e4 11177 |
. . . . . . . 8
⊢ (2
· 2) = 4 |
| 72 | 71 | eqcomi 2631 |
. . . . . . 7
⊢ 4 = (2
· 2) |
| 73 | 72 | a1i 11 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ 4 = (2 · 2)) |
| 74 | 73 | oveq1d 6665 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (4 · 𝐾) = ((2
· 2) · 𝐾)) |
| 75 | 23, 23, 25 | mulassd 10063 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ ((2 · 2) · 𝐾) = (2 · (2 · 𝐾))) |
| 76 | 74, 75 | eqtrd 2656 |
. . . 4
⊢ (𝐾 ∈ ℕ0
→ (4 · 𝐾) = (2
· (2 · 𝐾))) |
| 77 | 76 | oveq1d 6665 |
. . 3
⊢ (𝐾 ∈ ℕ0
→ ((4 · 𝐾)
− (2 · 𝐾)) =
((2 · (2 · 𝐾)) − (2 · 𝐾))) |
| 78 | 60 | nn0cnd 11353 |
. . . 4
⊢ (𝐾 ∈ ℕ0
→ (2 · 𝐾)
∈ ℂ) |
| 79 | | 2txmxeqx 11149 |
. . . 4
⊢ ((2
· 𝐾) ∈ ℂ
→ ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾)) |
| 80 | 78, 79 | syl 17 |
. . 3
⊢ (𝐾 ∈ ℕ0
→ ((2 · (2 · 𝐾)) − (2 · 𝐾)) = (2 · 𝐾)) |
| 81 | 70, 77, 80 | 3eqtrd 2660 |
. 2
⊢ (𝐾 ∈ ℕ0
→ (((((8 · 𝐾) +
1) − 1) / 2) − (⌊‘(((8 · 𝐾) + 1) / 4))) = (2 · 𝐾)) |
| 82 | 7, 81 | sylan9eqr 2678 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝑃 = ((8 ·
𝐾) + 1)) → 𝑁 = (2 · 𝐾)) |