MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem6 Structured version   Visualization version   GIF version

Theorem 3wlkdlem6 27025
Description: Lemma 6 for 3wlkd 27030. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem6 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))

Proof of Theorem 3wlkdlem6
StepHypRef Expression
1 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
41, 2, 33wlkdlem3 27021 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 3wlkd.e . . . . 5 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 preq12 4270 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
76sseq1d 3632 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
87adantr 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ↔ {𝐴, 𝐵} ⊆ (𝐼𝐽)))
9 preq12 4270 . . . . . . . 8 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
109ad2ant2lr 784 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1110sseq1d 3632 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
12 preq12 4270 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1312sseq1d 3632 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
1413adantl 482 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) ↔ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
158, 11, 143anbi123d 1399 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) ↔ ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿))))
165, 15syl5ibrcom 237 . . . 4 (𝜑 → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))))
174, 16mpd 15 . . 3 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)))
18 fvex 6201 . . . . . 6 (𝑃‘0) ∈ V
19 fvex 6201 . . . . . 6 (𝑃‘1) ∈ V
2018, 19prss 4351 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽))
21 simpl 473 . . . . 5 (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐽)) → (𝑃‘0) ∈ (𝐼𝐽))
2220, 21sylbir 225 . . . 4 ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) → (𝑃‘0) ∈ (𝐼𝐽))
23 fvex 6201 . . . . . 6 (𝑃‘2) ∈ V
2419, 23prss 4351 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾))
25 simpl 473 . . . . 5 (((𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐾)) → (𝑃‘1) ∈ (𝐼𝐾))
2624, 25sylbir 225 . . . 4 ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) → (𝑃‘1) ∈ (𝐼𝐾))
27 fvex 6201 . . . . . 6 (𝑃‘3) ∈ V
2823, 27prss 4351 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿))
29 simpl 473 . . . . 5 (((𝑃‘2) ∈ (𝐼𝐿) ∧ (𝑃‘3) ∈ (𝐼𝐿)) → (𝑃‘2) ∈ (𝐼𝐿))
3028, 29sylbir 225 . . . 4 ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿) → (𝑃‘2) ∈ (𝐼𝐿))
3122, 26, 303anim123i 1247 . . 3 (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼𝐽) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼𝐾) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼𝐿)) → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
3217, 31syl 17 . 2 (𝜑 → ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)))
33 eleq1 2689 . . . . . . 7 ((𝑃‘0) = 𝐴 → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3433adantr 481 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
3534adantr 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ∈ (𝐼𝐽) ↔ 𝐴 ∈ (𝐼𝐽)))
36 eleq1 2689 . . . . . . 7 ((𝑃‘1) = 𝐵 → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3736adantl 482 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
3837adantr 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ∈ (𝐼𝐾) ↔ 𝐵 ∈ (𝐼𝐾)))
39 eleq1 2689 . . . . . . 7 ((𝑃‘2) = 𝐶 → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4039adantr 481 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4140adantl 482 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ (𝐼𝐿) ↔ 𝐶 ∈ (𝐼𝐿)))
4235, 38, 413anbi123d 1399 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿)) ↔ (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿))))
4342bicomd 213 . . 3 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
444, 43syl 17 . 2 (𝜑 → ((𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)) ↔ ((𝑃‘0) ∈ (𝐼𝐽) ∧ (𝑃‘1) ∈ (𝐼𝐾) ∧ (𝑃‘2) ∈ (𝐼𝐿))))
4532, 44mpbird 247 1 (𝜑 → (𝐴 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wss 3574  {cpr 4179  cfv 5888  0cc0 9936  1c1 9937  2c2 11070  3c3 11071  ⟨“cs3 13587  ⟨“cs4 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595
This theorem is referenced by:  3wlkdlem7  27026
  Copyright terms: Public domain W3C validator