| Step | Hyp | Ref
| Expression |
| 1 | | dfcgra2.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | dfcgra2.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
| 3 | | acopyeu.k |
. . . 4
⊢ 𝐾 = (hlG‘𝐺) |
| 4 | | acopyeu.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 5 | 4 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑋 ∈ 𝑃) |
| 6 | 5 | ad3antrrr 766 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋 ∈ 𝑃) |
| 7 | | simplr 792 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦 ∈ 𝑃) |
| 8 | | acopyeu.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 9 | 8 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑌 ∈ 𝑃) |
| 10 | 9 | ad3antrrr 766 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑌 ∈ 𝑃) |
| 11 | | dfcgra2.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 12 | 11 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐺 ∈ TarskiG) |
| 13 | 12 | ad3antrrr 766 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐺 ∈ TarskiG) |
| 14 | | dfcgra2.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 15 | 14 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ 𝑃) |
| 16 | 15 | ad3antrrr 766 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐸 ∈ 𝑃) |
| 17 | | dfcgra2.m |
. . . . . . 7
⊢ − =
(dist‘𝐺) |
| 18 | | acopy.l |
. . . . . . 7
⊢ 𝐿 = (LineG‘𝐺) |
| 19 | | dfcgra2.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 20 | 19 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐴 ∈ 𝑃) |
| 21 | 20 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐴 ∈ 𝑃) |
| 22 | | dfcgra2.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 23 | 22 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐵 ∈ 𝑃) |
| 24 | 23 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐵 ∈ 𝑃) |
| 25 | | dfcgra2.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 26 | 25 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐶 ∈ 𝑃) |
| 27 | 26 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐶 ∈ 𝑃) |
| 28 | | simplr 792 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ∈ 𝑃) |
| 29 | 28 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑑 ∈ 𝑃) |
| 30 | | dfcgra2.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 31 | 30 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐹 ∈ 𝑃) |
| 32 | 31 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐹 ∈ 𝑃) |
| 33 | | acopy.1 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
| 34 | 33 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
| 35 | 34 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
| 36 | | dfcgra2.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 37 | 36 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐷 ∈ 𝑃) |
| 38 | | acopy.2 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
| 39 | 38 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
| 40 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑(𝐾‘𝐸)𝐷) |
| 41 | 1, 2, 3, 28, 37, 15, 12, 18, 40 | hlln 25502 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸)) |
| 42 | 1, 2, 3, 28, 37, 15, 12, 40 | hlne1 25500 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑑 ≠ 𝐸) |
| 43 | 1, 2, 18, 12, 37, 15, 31, 28, 39, 41, 42 | ncolncol 25541 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
| 44 | 43 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
| 45 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐸 − 𝑑) = (𝐵 − 𝐴)) |
| 46 | 1, 17, 2, 12, 15, 28, 23, 20, 45 | tgcgrcomlr 25375 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝑑 − 𝐸) = (𝐴 − 𝐵)) |
| 47 | 46 | eqcomd 2628 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐴 − 𝐵) = (𝑑 − 𝐸)) |
| 48 | 47 | ad3antrrr 766 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝐴 − 𝐵) = (𝑑 − 𝐸)) |
| 49 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑢 = 𝑎) |
| 50 | 49 | eleq1d 2686 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))) |
| 51 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → 𝑣 = 𝑏) |
| 52 | 51 | eleq1d 2686 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))) |
| 53 | 50, 52 | anbi12d 747 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))) |
| 54 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑤 = 𝑡) |
| 55 | | simpll 790 |
. . . . . . . . . . . 12
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑢 = 𝑎) |
| 56 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑣 = 𝑏) |
| 57 | 55, 56 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑢𝐼𝑣) = (𝑎𝐼𝑏)) |
| 58 | 54, 57 | eleq12d 2695 |
. . . . . . . . . 10
⊢ (((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑤 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝑎𝐼𝑏))) |
| 59 | 58 | cbvrexdva 3178 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))) |
| 60 | 53, 59 | anbi12d 747 |
. . . . . . . 8
⊢ ((𝑢 = 𝑎 ∧ 𝑣 = 𝑏) → (((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))) |
| 61 | 60 | cbvopabv 4722 |
. . . . . . 7
⊢
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} |
| 62 | | simpllr 799 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 ∈ 𝑃) |
| 63 | | simprll 802 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉) |
| 64 | | simprrl 804 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉) |
| 65 | 1, 2, 18, 11, 36, 14, 30, 38 | ncolne1 25520 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ≠ 𝐸) |
| 66 | 1, 2, 18, 11, 36, 14, 65 | tgelrnln 25525 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿) |
| 67 | 66 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐷𝐿𝐸) ∈ ran 𝐿) |
| 68 | 1, 2, 18, 11, 36, 14, 65 | tglinerflx2 25529 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐿𝐸)) |
| 69 | 68 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ (𝐷𝐿𝐸)) |
| 70 | 1, 2, 18, 12, 28, 15, 42, 42, 67, 41, 69 | tglinethru 25531 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸)) |
| 71 | 70, 67 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (𝑑𝐿𝐸) ∈ ran 𝐿) |
| 72 | 71 | ad3antrrr 766 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝑑𝐿𝐸) ∈ ran 𝐿) |
| 73 | 61 | eqcomi 2631 |
. . . . . . . 8
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} |
| 74 | 69, 70 | eleqtrd 2703 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐸 ∈ (𝑑𝐿𝐸)) |
| 75 | 74 | ad3antrrr 766 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐸 ∈ (𝑑𝐿𝐸)) |
| 76 | 37 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝐷 ∈ 𝑃) |
| 77 | | acopyeu.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
| 78 | 1, 18, 2, 11, 22, 25, 19, 33 | ncolrot2 25458 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 79 | 1, 2, 17, 11, 19, 22, 25, 36, 14, 4, 77, 18, 78 | cgrancol 25720 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (𝑋 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
| 80 | 1, 18, 2, 11, 36, 14, 4, 79 | ncolcom 25456 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 81 | 80 | ad5antr 770 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 82 | | simprlr 803 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥(𝐾‘𝐸)𝑋) |
| 83 | 1, 2, 3, 62, 6, 16, 13, 18, 82 | hlln 25502 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 ∈ (𝑋𝐿𝐸)) |
| 84 | 1, 2, 3, 62, 6, 16, 13, 82 | hlne1 25500 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 ≠ 𝐸) |
| 85 | 1, 2, 18, 13, 6, 16, 76, 62, 81, 83, 84 | ncolncol 25541 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 86 | 1, 18, 2, 13, 16, 76, 62, 85 | ncolcom 25456 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
| 87 | | pm2.45 412 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
| 89 | 70 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸)) |
| 90 | 89 | eleq2d 2687 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝑥 ∈ (𝐷𝐿𝐸) ↔ 𝑥 ∈ (𝑑𝐿𝐸))) |
| 91 | 88, 90 | mtbid 314 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑥 ∈ (𝑑𝐿𝐸)) |
| 92 | 1, 2, 18, 13, 72, 16, 61, 3, 75, 62, 6, 91, 82 | hphl 25663 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑋) |
| 93 | | acopyeu.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
| 94 | 93 | ad5antr 770 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
| 95 | 70 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸))) |
| 96 | 95 | ad3antrrr 766 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸))) |
| 97 | 96 | breqd 4664 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹 ↔ 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)) |
| 98 | 94, 97 | mpbid 222 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
| 99 | 1, 2, 18, 13, 72, 62, 73, 6, 92, 32, 98 | hpgtr 25660 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
| 100 | | acopyeu.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑌”〉) |
| 101 | 1, 2, 17, 11, 19, 22, 25, 36, 14, 8, 100, 18, 78 | cgrancol 25720 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ (𝑌 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
| 102 | 1, 18, 2, 11, 36, 14, 8, 101 | ncolcom 25456 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 103 | 102 | ad5antr 770 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 104 | | simprrr 805 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦(𝐾‘𝐸)𝑌) |
| 105 | 1, 2, 3, 7, 10, 16, 13, 18, 104 | hlln 25502 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦 ∈ (𝑌𝐿𝐸)) |
| 106 | 1, 2, 3, 7, 10, 16, 13, 104 | hlne1 25500 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦 ≠ 𝐸) |
| 107 | 1, 2, 18, 13, 10, 16, 76, 7, 103, 105, 106 | ncolncol 25541 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 108 | 1, 18, 2, 13, 16, 76, 7, 107 | ncolcom 25456 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
| 109 | | pm2.45 412 |
. . . . . . . . . . 11
⊢ (¬
(𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑦 ∈ (𝐷𝐿𝐸)) |
| 110 | 108, 109 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑦 ∈ (𝐷𝐿𝐸)) |
| 111 | 89 | eleq2d 2687 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝑦 ∈ (𝐷𝐿𝐸) ↔ 𝑦 ∈ (𝑑𝐿𝐸))) |
| 112 | 110, 111 | mtbid 314 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → ¬ 𝑦 ∈ (𝑑𝐿𝐸)) |
| 113 | 1, 2, 18, 13, 72, 16, 61, 3, 75, 7, 10, 112, 104 | hphl 25663 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑌) |
| 114 | | acopyeu.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
| 115 | 114 | ad5antr 770 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
| 116 | 96 | breqd 4664 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → (𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹 ↔ 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)) |
| 117 | 115, 116 | mpbid 222 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
| 118 | 1, 2, 18, 13, 72, 7, 73, 10, 113, 32, 117 | hpgtr 25660 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹) |
| 119 | 1, 17, 2, 18, 3, 13, 21, 24, 27, 29, 16, 32, 35, 44, 48, 61, 62, 7, 63, 64, 99, 118 | trgcopyeulem 25697 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑥 = 𝑦) |
| 120 | 119, 82 | eqbrtrrd 4677 |
. . . . 5
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑦(𝐾‘𝐸)𝑋) |
| 121 | 1, 2, 3, 7, 6, 16,
13, 120 | hlcomd 25499 |
. . . 4
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋(𝐾‘𝐸)𝑦) |
| 122 | 1, 2, 3, 6, 7, 10,
13, 16, 121, 104 | hltr 25505 |
. . 3
⊢
((((((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) → 𝑋(𝐾‘𝐸)𝑌) |
| 123 | 77 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑋”〉) |
| 124 | 1, 2, 3, 12, 20, 23, 26, 37, 15, 5, 123, 28, 40 | cgrahl1 25708 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑋”〉) |
| 125 | 1, 2, 18, 11, 19, 22, 25, 33 | ncolne1 25520 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 126 | 125 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝐴 ≠ 𝐵) |
| 127 | 1, 2, 3, 12, 20, 23, 26, 28, 15, 5, 17, 126, 47 | iscgra1 25702 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑋”〉 ↔ ∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋))) |
| 128 | 124, 127 | mpbid 222 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋)) |
| 129 | 100 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝑌”〉) |
| 130 | 1, 2, 3, 12, 20, 23, 26, 37, 15, 9, 129, 28, 40 | cgrahl1 25708 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑌”〉) |
| 131 | 1, 2, 3, 12, 20, 23, 26, 28, 15, 9, 17, 126, 47 | iscgra1 25702 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝑑𝐸𝑌”〉 ↔ ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) |
| 132 | 130, 131 | mpbid 222 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌)) |
| 133 | | reeanv 3107 |
. . . 4
⊢
(∃𝑥 ∈
𝑃 ∃𝑦 ∈ 𝑃 ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌)) ↔ (∃𝑥 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) |
| 134 | 128, 132,
133 | sylanbrc 698 |
. . 3
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑥”〉 ∧ 𝑥(𝐾‘𝐸)𝑋) ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑑𝐸𝑦”〉 ∧ 𝑦(𝐾‘𝐸)𝑌))) |
| 135 | 122, 134 | r19.29vva 3081 |
. 2
⊢ (((𝜑 ∧ 𝑑 ∈ 𝑃) ∧ (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) → 𝑋(𝐾‘𝐸)𝑌) |
| 136 | 125 | necomd 2849 |
. . 3
⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 137 | 1, 2, 3, 14, 22, 19, 11, 36, 17, 65, 136 | hlcgrex 25511 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ 𝑃 (𝑑(𝐾‘𝐸)𝐷 ∧ (𝐸 − 𝑑) = (𝐵 − 𝐴))) |
| 138 | 135, 137 | r19.29a 3078 |
1
⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝑌) |