MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acopyeu Structured version   Visualization version   GIF version

Theorem acopyeu 25725
Description: Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
acopy.l 𝐿 = (LineG‘𝐺)
acopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
acopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
acopyeu.x (𝜑𝑋𝑃)
acopyeu.y (𝜑𝑌𝑃)
acopyeu.k 𝐾 = (hlG‘𝐺)
acopyeu.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
acopyeu.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
acopyeu.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
acopyeu.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
acopyeu (𝜑𝑋(𝐾𝐸)𝑌)

Proof of Theorem acopyeu
Dummy variables 𝑎 𝑑 𝑡 𝑥 𝑦 𝑏 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . . 4 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . . 4 𝐼 = (Itv‘𝐺)
3 acopyeu.k . . . 4 𝐾 = (hlG‘𝐺)
4 acopyeu.x . . . . . 6 (𝜑𝑋𝑃)
54ad2antrr 762 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋𝑃)
65ad3antrrr 766 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋𝑃)
7 simplr 792 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝑃)
8 acopyeu.y . . . . . 6 (𝜑𝑌𝑃)
98ad2antrr 762 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑌𝑃)
109ad3antrrr 766 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌𝑃)
11 dfcgra2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
1211ad2antrr 762 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐺 ∈ TarskiG)
1312ad3antrrr 766 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐺 ∈ TarskiG)
14 dfcgra2.e . . . . . 6 (𝜑𝐸𝑃)
1514ad2antrr 762 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸𝑃)
1615ad3antrrr 766 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸𝑃)
17 dfcgra2.m . . . . . . 7 = (dist‘𝐺)
18 acopy.l . . . . . . 7 𝐿 = (LineG‘𝐺)
19 dfcgra2.a . . . . . . . . 9 (𝜑𝐴𝑃)
2019ad2antrr 762 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝑃)
2120ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐴𝑃)
22 dfcgra2.b . . . . . . . . 9 (𝜑𝐵𝑃)
2322ad2antrr 762 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐵𝑃)
2423ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐵𝑃)
25 dfcgra2.c . . . . . . . . 9 (𝜑𝐶𝑃)
2625ad2antrr 762 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐶𝑃)
2726ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐶𝑃)
28 simplr 792 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝑃)
2928ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑑𝑃)
30 dfcgra2.f . . . . . . . . 9 (𝜑𝐹𝑃)
3130ad2antrr 762 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐹𝑃)
3231ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐹𝑃)
33 acopy.1 . . . . . . . . 9 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3433ad2antrr 762 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
3534ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
36 dfcgra2.d . . . . . . . . . 10 (𝜑𝐷𝑃)
3736ad2antrr 762 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐷𝑃)
38 acopy.2 . . . . . . . . . 10 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
3938ad2antrr 762 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
40 simprl 794 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑(𝐾𝐸)𝐷)
411, 2, 3, 28, 37, 15, 12, 18, 40hlln 25502 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑 ∈ (𝐷𝐿𝐸))
421, 2, 3, 28, 37, 15, 12, 40hlne1 25500 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑑𝐸)
431, 2, 18, 12, 37, 15, 31, 28, 39, 41, 42ncolncol 25541 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
4443ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑑 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
45 simprr 796 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐸 𝑑) = (𝐵 𝐴))
461, 17, 2, 12, 15, 28, 23, 20, 45tgcgrcomlr 25375 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑 𝐸) = (𝐴 𝐵))
4746eqcomd 2628 . . . . . . . 8 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐴 𝐵) = (𝑑 𝐸))
4847ad3antrrr 766 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐴 𝐵) = (𝑑 𝐸))
49 simpl 473 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑢 = 𝑎)
5049eleq1d 2686 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
51 simpr 477 . . . . . . . . . . 11 ((𝑢 = 𝑎𝑣 = 𝑏) → 𝑣 = 𝑏)
5251eleq1d 2686 . . . . . . . . . 10 ((𝑢 = 𝑎𝑣 = 𝑏) → (𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))))
5350, 52anbi12d 747 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸)))))
54 simpr 477 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑤 = 𝑡)
55 simpll 790 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑢 = 𝑎)
56 simplr 792 . . . . . . . . . . . 12 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → 𝑣 = 𝑏)
5755, 56oveq12d 6668 . . . . . . . . . . 11 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑢𝐼𝑣) = (𝑎𝐼𝑏))
5854, 57eleq12d 2695 . . . . . . . . . 10 (((𝑢 = 𝑎𝑣 = 𝑏) ∧ 𝑤 = 𝑡) → (𝑤 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
5958cbvrexdva 3178 . . . . . . . . 9 ((𝑢 = 𝑎𝑣 = 𝑏) → (∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
6053, 59anbi12d 747 . . . . . . . 8 ((𝑢 = 𝑎𝑣 = 𝑏) → (((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
6160cbvopabv 4722 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
62 simpllr 799 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝑃)
63 simprll 802 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩)
64 simprrl 804 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩)
651, 2, 18, 11, 36, 14, 30, 38ncolne1 25520 . . . . . . . . . . . . 13 (𝜑𝐷𝐸)
661, 2, 18, 11, 36, 14, 65tgelrnln 25525 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
6766ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
681, 2, 18, 11, 36, 14, 65tglinerflx2 25529 . . . . . . . . . . . 12 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
6968ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝐷𝐿𝐸))
701, 2, 18, 12, 28, 15, 42, 42, 67, 41, 69tglinethru 25531 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
7170, 67eqeltrrd 2702 . . . . . . . . 9 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
7271ad3antrrr 766 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑑𝐿𝐸) ∈ ran 𝐿)
7361eqcomi 2631 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑡 ∈ (𝑑𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝑑𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝑑𝐿𝐸))) ∧ ∃𝑤 ∈ (𝑑𝐿𝐸)𝑤 ∈ (𝑢𝐼𝑣))}
7469, 70eleqtrd 2703 . . . . . . . . . 10 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐸 ∈ (𝑑𝐿𝐸))
7574ad3antrrr 766 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐸 ∈ (𝑑𝐿𝐸))
7637ad3antrrr 766 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝐷𝑃)
77 acopyeu.1 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
781, 18, 2, 11, 22, 25, 19, 33ncolrot2 25458 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
791, 2, 17, 11, 19, 22, 25, 36, 14, 4, 77, 18, 78cgrancol 25720 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑋 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
801, 18, 2, 11, 36, 14, 4, 79ncolcom 25456 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
8180ad5antr 770 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑋 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
82 simprlr 803 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥(𝐾𝐸)𝑋)
831, 2, 3, 62, 6, 16, 13, 18, 82hlln 25502 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 ∈ (𝑋𝐿𝐸))
841, 2, 3, 62, 6, 16, 13, 82hlne1 25500 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥𝐸)
851, 2, 18, 13, 6, 16, 76, 62, 81, 83, 84ncolncol 25541 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
861, 18, 2, 13, 16, 76, 62, 85ncolcom 25456 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
87 pm2.45 412 . . . . . . . . . . 11 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
8886, 87syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
8970ad3antrrr 766 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝐷𝐿𝐸) = (𝑑𝐿𝐸))
9089eleq2d 2687 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑥 ∈ (𝐷𝐿𝐸) ↔ 𝑥 ∈ (𝑑𝐿𝐸)))
9188, 90mtbid 314 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑥 ∈ (𝑑𝐿𝐸))
921, 2, 18, 13, 72, 16, 61, 3, 75, 62, 6, 91, 82hphl 25663 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑋)
93 acopyeu.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9493ad5antr 770 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
9570fveq2d 6195 . . . . . . . . . . 11 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
9695ad3antrrr 766 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ((hpG‘𝐺)‘(𝐷𝐿𝐸)) = ((hpG‘𝐺)‘(𝑑𝐿𝐸)))
9796breqd 4664 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
9894, 97mpbid 222 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
991, 2, 18, 13, 72, 62, 73, 6, 92, 32, 98hpgtr 25660 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
100 acopyeu.2 . . . . . . . . . . . . . . . 16 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
1011, 2, 17, 11, 19, 22, 25, 36, 14, 8, 100, 18, 78cgrancol 25720 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑌 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
1021, 18, 2, 11, 36, 14, 8, 101ncolcom 25456 . . . . . . . . . . . . . 14 (𝜑 → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
103102ad5antr 770 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑌 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
104 simprrr 805 . . . . . . . . . . . . . 14 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑌)
1051, 2, 3, 7, 10, 16, 13, 18, 104hlln 25502 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦 ∈ (𝑌𝐿𝐸))
1061, 2, 3, 7, 10, 16, 13, 104hlne1 25500 . . . . . . . . . . . . 13 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦𝐸)
1071, 2, 18, 13, 10, 16, 76, 7, 103, 105, 106ncolncol 25541 . . . . . . . . . . . 12 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1081, 18, 2, 13, 16, 76, 7, 107ncolcom 25456 . . . . . . . . . . 11 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
109 pm2.45 412 . . . . . . . . . . 11 (¬ (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
110108, 109syl 17 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝐷𝐿𝐸))
11189eleq2d 2687 . . . . . . . . . 10 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑦 ∈ (𝐷𝐿𝐸) ↔ 𝑦 ∈ (𝑑𝐿𝐸)))
112110, 111mtbid 314 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → ¬ 𝑦 ∈ (𝑑𝐿𝐸))
1131, 2, 18, 13, 72, 16, 61, 3, 75, 7, 10, 112, 104hphl 25663 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝑌)
114 acopyeu.4 . . . . . . . . . 10 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
115114ad5antr 770 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
11696breqd 4664 . . . . . . . . 9 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → (𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹))
117115, 116mpbid 222 . . . . . . . 8 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑌((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1181, 2, 18, 13, 72, 7, 73, 10, 113, 32, 117hpgtr 25660 . . . . . . 7 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦((hpG‘𝐺)‘(𝑑𝐿𝐸))𝐹)
1191, 17, 2, 18, 3, 13, 21, 24, 27, 29, 16, 32, 35, 44, 48, 61, 62, 7, 63, 64, 99, 118trgcopyeulem 25697 . . . . . 6 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑥 = 𝑦)
120119, 82eqbrtrrd 4677 . . . . 5 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑦(𝐾𝐸)𝑋)
1211, 2, 3, 7, 6, 16, 13, 120hlcomd 25499 . . . 4 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑦)
1221, 2, 3, 6, 7, 10, 13, 16, 121, 104hltr 25505 . . 3 ((((((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))) → 𝑋(𝐾𝐸)𝑌)
12377ad2antrr 762 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
1241, 2, 3, 12, 20, 23, 26, 37, 15, 5, 123, 28, 40cgrahl1 25708 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩)
1251, 2, 18, 11, 19, 22, 25, 33ncolne1 25520 . . . . . . 7 (𝜑𝐴𝐵)
126125ad2antrr 762 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝐴𝐵)
1271, 2, 3, 12, 20, 23, 26, 28, 15, 5, 17, 126, 47iscgra1 25702 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑋”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋)))
128124, 127mpbid 222 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋))
129100ad2antrr 762 . . . . . 6 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)
1301, 2, 3, 12, 20, 23, 26, 37, 15, 9, 129, 28, 40cgrahl1 25708 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩)
1311, 2, 3, 12, 20, 23, 26, 28, 15, 9, 17, 126, 47iscgra1 25702 . . . . 5 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑑𝐸𝑌”⟩ ↔ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
132130, 131mpbid 222 . . . 4 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌))
133 reeanv 3107 . . . 4 (∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)) ↔ (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ ∃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
134128, 132, 133sylanbrc 698 . . 3 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → ∃𝑥𝑃𝑦𝑃 ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝑋) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑑𝐸𝑦”⟩ ∧ 𝑦(𝐾𝐸)𝑌)))
135122, 134r19.29vva 3081 . 2 (((𝜑𝑑𝑃) ∧ (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴))) → 𝑋(𝐾𝐸)𝑌)
136125necomd 2849 . . 3 (𝜑𝐵𝐴)
1371, 2, 3, 14, 22, 19, 11, 36, 17, 65, 136hlcgrex 25511 . 2 (𝜑 → ∃𝑑𝑃 (𝑑(𝐾𝐸)𝐷 ∧ (𝐸 𝑑) = (𝐵 𝐴)))
138135, 137r19.29a 3078 1 (𝜑𝑋(𝐾𝐸)𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cdif 3571   class class class wbr 4653  {copab 4712  ran crn 5115  cfv 5888  (class class class)co 6650  ⟨“cs3 13587  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  hlGchlg 25495  hpGchpg 25649  cgrAccgra 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-hlg 25496  df-mir 25548  df-rag 25589  df-perpg 25591  df-hpg 25650  df-mid 25666  df-lmi 25667  df-cgra 25700
This theorem is referenced by:  tgasa1  25739
  Copyright terms: Public domain W3C validator