MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmind2 Structured version   Visualization version   GIF version

Theorem prmind2 15398
Description: A variation on prmind 15399 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1 (𝑥 = 1 → (𝜑𝜓))
prmind.2 (𝑥 = 𝑦 → (𝜑𝜒))
prmind.3 (𝑥 = 𝑧 → (𝜑𝜃))
prmind.4 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
prmind.5 (𝑥 = 𝐴 → (𝜑𝜂))
prmind.6 𝜓
prmind2.7 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
prmind2.8 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
prmind2 (𝐴 ∈ ℕ → 𝜂)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑥,𝑧,𝜒   𝜂,𝑥   𝜏,𝑥   𝜃,𝑥   𝑦,𝑧,𝜑
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem prmind2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1end 12371 . . 3 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
21biimpi 206 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴))
3 oveq2 6658 . . . 4 (𝑛 = 1 → (1...𝑛) = (1...1))
43raleqdv 3144 . . 3 (𝑛 = 1 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...1)𝜑))
5 oveq2 6658 . . . 4 (𝑛 = 𝑘 → (1...𝑛) = (1...𝑘))
65raleqdv 3144 . . 3 (𝑛 = 𝑘 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝑘)𝜑))
7 oveq2 6658 . . . 4 (𝑛 = (𝑘 + 1) → (1...𝑛) = (1...(𝑘 + 1)))
87raleqdv 3144 . . 3 (𝑛 = (𝑘 + 1) → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
9 oveq2 6658 . . . 4 (𝑛 = 𝐴 → (1...𝑛) = (1...𝐴))
109raleqdv 3144 . . 3 (𝑛 = 𝐴 → (∀𝑥 ∈ (1...𝑛)𝜑 ↔ ∀𝑥 ∈ (1...𝐴)𝜑))
11 prmind.6 . . . . 5 𝜓
12 elfz1eq 12352 . . . . . 6 (𝑥 ∈ (1...1) → 𝑥 = 1)
13 prmind.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
1412, 13syl 17 . . . . 5 (𝑥 ∈ (1...1) → (𝜑𝜓))
1511, 14mpbiri 248 . . . 4 (𝑥 ∈ (1...1) → 𝜑)
1615rgen 2922 . . 3 𝑥 ∈ (1...1)𝜑
17 peano2nn 11032 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1817ad2antrr 762 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ)
1918nncnd 11036 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℂ)
20 elfzuz 12338 . . . . . . . . . . . . . 14 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ∈ (ℤ‘2))
2120ad2antrl 764 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (ℤ‘2))
22 eluz2nn 11726 . . . . . . . . . . . . 13 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℕ)
2321, 22syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℕ)
2423nncnd 11036 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℂ)
2523nnne0d 11065 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≠ 0)
2619, 24, 25divcan2d 10803 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 · ((𝑘 + 1) / 𝑦)) = (𝑘 + 1))
27 simprr 796 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∥ (𝑘 + 1))
2823nnzd 11481 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℤ)
2918nnzd 11481 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℤ)
30 dvdsval2 14986 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ (𝑘 + 1) ∈ ℤ) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3128, 25, 29, 30syl3anc 1326 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∥ (𝑘 + 1) ↔ ((𝑘 + 1) / 𝑦) ∈ ℤ))
3227, 31mpbid 222 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℤ)
3324mulid2d 10058 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) = 𝑦)
34 elfzle2 12345 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (2...((𝑘 + 1) − 1)) → 𝑦 ≤ ((𝑘 + 1) − 1))
3534ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ≤ ((𝑘 + 1) − 1))
36 nncn 11028 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
3736ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℂ)
38 ax-1cn 9994 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
39 pncan 10287 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
4037, 38, 39sylancl 694 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) − 1) = 𝑘)
4135, 40breqtrd 4679 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦𝑘)
42 nnz 11399 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
4342ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑘 ∈ ℤ)
44 zleltp1 11428 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4528, 43, 44syl2anc 693 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦𝑘𝑦 < (𝑘 + 1)))
4641, 45mpbid 222 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 < (𝑘 + 1))
4733, 46eqbrtrd 4675 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (1 · 𝑦) < (𝑘 + 1))
48 1red 10055 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 ∈ ℝ)
4918nnred 11035 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
5023nnred 11035 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ)
5123nngt0d 11064 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < 𝑦)
52 ltmuldiv 10896 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5348, 49, 50, 51, 52syl112anc 1330 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((1 · 𝑦) < (𝑘 + 1) ↔ 1 < ((𝑘 + 1) / 𝑦)))
5447, 53mpbid 222 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < ((𝑘 + 1) / 𝑦))
55 eluz2b1 11759 . . . . . . . . . . . 12 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 1 < ((𝑘 + 1) / 𝑦)))
5632, 54, 55sylanbrc 698 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (ℤ‘2))
57 fznn 12408 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
5843, 57syl 17 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑦 ∈ (1...𝑘) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑘)))
5923, 41, 58mpbir2and 957 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ (1...𝑘))
60 simplr 792 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑥 ∈ (1...𝑘)𝜑)
61 prmind.2 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝜑𝜒))
6261rspcv 3305 . . . . . . . . . . . . 13 (𝑦 ∈ (1...𝑘) → (∀𝑥 ∈ (1...𝑘)𝜑𝜒))
6359, 60, 62sylc 65 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝜒)
6418nnrpd 11870 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ+)
6523nnrpd 11870 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 𝑦 ∈ ℝ+)
6664, 65rpdivcld 11889 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℝ+)
6766rpgt0d 11875 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < ((𝑘 + 1) / 𝑦))
68 elnnz 11387 . . . . . . . . . . . . . . 15 (((𝑘 + 1) / 𝑦) ∈ ℕ ↔ (((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 0 < ((𝑘 + 1) / 𝑦)))
6932, 67, 68sylanbrc 698 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ ℕ)
7018nnne0d 11065 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝑘 + 1) ≠ 0)
7119, 70dividd 10799 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) = 1)
72 eluz2b2 11761 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (ℤ‘2) ↔ (𝑦 ∈ ℕ ∧ 1 < 𝑦))
7372simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (ℤ‘2) → 1 < 𝑦)
7421, 73syl 17 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 1 < 𝑦)
7571, 74eqbrtrd 4675 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / (𝑘 + 1)) < 𝑦)
7618nngt0d 11064 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → 0 < (𝑘 + 1))
77 ltdiv23 10914 . . . . . . . . . . . . . . . . 17 (((𝑘 + 1) ∈ ℝ ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
7849, 49, 76, 50, 51, 77syl122anc 1335 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / (𝑘 + 1)) < 𝑦 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
7975, 78mpbid 222 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) < (𝑘 + 1))
80 zleltp1 11428 . . . . . . . . . . . . . . . 16 ((((𝑘 + 1) / 𝑦) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8132, 43, 80syl2anc 693 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ≤ 𝑘 ↔ ((𝑘 + 1) / 𝑦) < (𝑘 + 1)))
8279, 81mpbird 247 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ≤ 𝑘)
83 fznn 12408 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8443, 83syl 17 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) ↔ (((𝑘 + 1) / 𝑦) ∈ ℕ ∧ ((𝑘 + 1) / 𝑦) ≤ 𝑘)))
8569, 82, 84mpbir2and 957 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ((𝑘 + 1) / 𝑦) ∈ (1...𝑘))
86 prmind.3 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝜑𝜃))
8786cbvralv 3171 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑧 ∈ (1...𝑘)𝜃)
8860, 87sylib 208 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → ∀𝑧 ∈ (1...𝑘)𝜃)
89 vex 3203 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
9089, 86sbcie 3470 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝜑𝜃)
91 dfsbcq 3437 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘 + 1) / 𝑦) → ([𝑧 / 𝑥]𝜑[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9290, 91syl5bbr 274 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜃[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9392rspcv 3305 . . . . . . . . . . . . 13 (((𝑘 + 1) / 𝑦) ∈ (1...𝑘) → (∀𝑧 ∈ (1...𝑘)𝜃[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9485, 88, 93sylc 65 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [((𝑘 + 1) / 𝑦) / 𝑥]𝜑)
9563, 94jca 554 . . . . . . . . . . 11 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑))
9692anbi2d 740 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝜒𝜃) ↔ (𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑)))
97 ovex 6678 . . . . . . . . . . . . . . . 16 (𝑦 · 𝑧) ∈ V
98 prmind.4 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝑧) → (𝜑𝜏))
9997, 98sbcie 3470 . . . . . . . . . . . . . . 15 ([(𝑦 · 𝑧) / 𝑥]𝜑𝜏)
100 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝑦 · 𝑧) = (𝑦 · ((𝑘 + 1) / 𝑦)))
101100sbceq1d 3440 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘 + 1) / 𝑦) → ([(𝑦 · 𝑧) / 𝑥]𝜑[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
10299, 101syl5bbr 274 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘 + 1) / 𝑦) → (𝜏[(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))
10396, 102imbi12d 334 . . . . . . . . . . . . 13 (𝑧 = ((𝑘 + 1) / 𝑦) → (((𝜒𝜃) → 𝜏) ↔ ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
104103imbi2d 330 . . . . . . . . . . . 12 (𝑧 = ((𝑘 + 1) / 𝑦) → ((𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → 𝜏)) ↔ (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑))))
105 prmind2.8 . . . . . . . . . . . . 13 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝜒𝜃) → 𝜏))
106105expcom 451 . . . . . . . . . . . 12 (𝑧 ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒𝜃) → 𝜏)))
107104, 106vtoclga 3272 . . . . . . . . . . 11 (((𝑘 + 1) / 𝑦) ∈ (ℤ‘2) → (𝑦 ∈ (ℤ‘2) → ((𝜒[((𝑘 + 1) / 𝑦) / 𝑥]𝜑) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)))
10856, 21, 95, 107syl3c 66 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑦 · ((𝑘 + 1) / 𝑦)) / 𝑥]𝜑)
10926, 108sbceq1dd 3441 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) ∧ (𝑦 ∈ (2...((𝑘 + 1) − 1)) ∧ 𝑦 ∥ (𝑘 + 1))) → [(𝑘 + 1) / 𝑥]𝜑)
110109rexlimdvaa 3032 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
111 ralnex 2992 . . . . . . . . 9 (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ ¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1))
112 simpl 473 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℕ)
113 elnnuz 11724 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
114112, 113sylib 208 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ (ℤ‘1))
115 eluzp1p1 11713 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘1) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
116114, 115syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘(1 + 1)))
117 df-2 11079 . . . . . . . . . . . . 13 2 = (1 + 1)
118117fveq2i 6194 . . . . . . . . . . . 12 (ℤ‘2) = (ℤ‘(1 + 1))
119116, 118syl6eleqr 2712 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (𝑘 + 1) ∈ (ℤ‘2))
120 isprm3 15396 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ ℙ ↔ ((𝑘 + 1) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1)))
121120baibr 945 . . . . . . . . . . 11 ((𝑘 + 1) ∈ (ℤ‘2) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
122119, 121syl 17 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) ↔ (𝑘 + 1) ∈ ℙ))
123 simpr 477 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑥 ∈ (1...𝑘)𝜑)
12461cbvralv 3171 . . . . . . . . . . . . 13 (∀𝑥 ∈ (1...𝑘)𝜑 ↔ ∀𝑦 ∈ (1...𝑘)𝜒)
125123, 124sylib 208 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...𝑘)𝜒)
126112nncnd 11036 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → 𝑘 ∈ ℂ)
127126, 38, 39sylancl 694 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) − 1) = 𝑘)
128127oveq2d 6666 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
129128raleqdv 3144 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒 ↔ ∀𝑦 ∈ (1...𝑘)𝜒))
130125, 129mpbird 247 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒)
131 nfcv 2764 . . . . . . . . . . . 12 𝑥(𝑘 + 1)
132 nfv 1843 . . . . . . . . . . . . 13 𝑥𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒
133 nfsbc1v 3455 . . . . . . . . . . . . 13 𝑥[(𝑘 + 1) / 𝑥]𝜑
134132, 133nfim 1825 . . . . . . . . . . . 12 𝑥(∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)
135 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝑥 − 1) = ((𝑘 + 1) − 1))
136135oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → (1...(𝑥 − 1)) = (1...((𝑘 + 1) − 1)))
137136raleqdv 3144 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒 ↔ ∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒))
138 sbceq1a 3446 . . . . . . . . . . . . 13 (𝑥 = (𝑘 + 1) → (𝜑[(𝑘 + 1) / 𝑥]𝜑))
139137, 138imbi12d 334 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → ((∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑) ↔ (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑)))
140 prmind2.7 . . . . . . . . . . . . 13 ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑)
141140ex 450 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → (∀𝑦 ∈ (1...(𝑥 − 1))𝜒𝜑))
142131, 134, 139, 141vtoclgaf 3271 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℙ → (∀𝑦 ∈ (1...((𝑘 + 1) − 1))𝜒[(𝑘 + 1) / 𝑥]𝜑))
143130, 142syl5com 31 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → ((𝑘 + 1) ∈ ℙ → [(𝑘 + 1) / 𝑥]𝜑))
144122, 143sylbid 230 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (∀𝑦 ∈ (2...((𝑘 + 1) − 1)) ¬ 𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
145111, 144syl5bir 233 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → (¬ ∃𝑦 ∈ (2...((𝑘 + 1) − 1))𝑦 ∥ (𝑘 + 1) → [(𝑘 + 1) / 𝑥]𝜑))
146110, 145pm2.61d 170 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ∀𝑥 ∈ (1...𝑘)𝜑) → [(𝑘 + 1) / 𝑥]𝜑)
147146ex 450 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑[(𝑘 + 1) / 𝑥]𝜑))
148 ralsnsg 4216 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
14917, 148syl 17 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑥 ∈ {(𝑘 + 1)}𝜑[(𝑘 + 1) / 𝑥]𝜑))
150147, 149sylibrd 249 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
151150ancld 576 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
152 fzsuc 12388 . . . . . . 7 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
153113, 152sylbi 207 . . . . . 6 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
154153raleqdv 3144 . . . . 5 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ ∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑))
155 ralunb 3794 . . . . 5 (∀𝑥 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑))
156154, 155syl6bb 276 . . . 4 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...(𝑘 + 1))𝜑 ↔ (∀𝑥 ∈ (1...𝑘)𝜑 ∧ ∀𝑥 ∈ {(𝑘 + 1)}𝜑)))
157151, 156sylibrd 249 . . 3 (𝑘 ∈ ℕ → (∀𝑥 ∈ (1...𝑘)𝜑 → ∀𝑥 ∈ (1...(𝑘 + 1))𝜑))
1584, 6, 8, 10, 16, 157nnind 11038 . 2 (𝐴 ∈ ℕ → ∀𝑥 ∈ (1...𝐴)𝜑)
159 prmind.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜂))
160159rspcv 3305 . 2 (𝐴 ∈ (1...𝐴) → (∀𝑥 ∈ (1...𝐴)𝜑𝜂))
1612, 158, 160sylc 65 1 (𝐴 ∈ ℕ → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  [wsbc 3435  cun 3572  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  cz 11377  cuz 11687  ...cfz 12326  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  prmind  15399  4sqlem19  15667
  Copyright terms: Public domain W3C validator