Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1 Structured version   Visualization version   Unicode version

Theorem archiabllem1 29747
Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b  |-  B  =  ( Base `  W
)
archiabllem.0  |-  .0.  =  ( 0g `  W )
archiabllem.e  |-  .<_  =  ( le `  W )
archiabllem.t  |-  .<  =  ( lt `  W )
archiabllem.m  |-  .x.  =  (.g
`  W )
archiabllem.g  |-  ( ph  ->  W  e. oGrp )
archiabllem.a  |-  ( ph  ->  W  e. Archi )
archiabllem1.u  |-  ( ph  ->  U  e.  B )
archiabllem1.p  |-  ( ph  ->  .0.  .<  U )
archiabllem1.s  |-  ( (
ph  /\  x  e.  B  /\  .0.  .<  x
)  ->  U  .<_  x )
Assertion
Ref Expression
archiabllem1  |-  ( ph  ->  W  e.  Abel )
Distinct variable groups:    x, B    x, U    x, W    ph, x    x, 
.x.    x,  .0.    x,  .<    x,  .<_

Proof of Theorem archiabllem1
Dummy variables  m  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3  |-  ( ph  ->  W  e. oGrp )
2 ogrpgrp 29703 . . 3  |-  ( W  e. oGrp  ->  W  e.  Grp )
31, 2syl 17 . 2  |-  ( ph  ->  W  e.  Grp )
4 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  m  e.  ZZ )
54zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  m  e.  CC )
6 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
76zcnd 11483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  CC )
85, 7addcomd 10238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
m  +  n )  =  ( n  +  m ) )
98oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( m  +  n
)  .x.  U )  =  ( ( n  +  m )  .x.  U ) )
103ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  W  e.  Grp )
11 archiabllem1.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  B )
1211ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  U  e.  B )
13 archiabllem.b . . . . . . . . . . . 12  |-  B  =  ( Base `  W
)
14 archiabllem.m . . . . . . . . . . . 12  |-  .x.  =  (.g
`  W )
15 eqid 2622 . . . . . . . . . . . 12  |-  ( +g  `  W )  =  ( +g  `  W )
1613, 14, 15mulgdir 17573 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  ( m  e.  ZZ  /\  n  e.  ZZ  /\  U  e.  B )
)  ->  ( (
m  +  n ) 
.x.  U )  =  ( ( m  .x.  U ) ( +g  `  W ) ( n 
.x.  U ) ) )
1710, 4, 6, 12, 16syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( m  +  n
)  .x.  U )  =  ( ( m 
.x.  U ) ( +g  `  W ) ( n  .x.  U
) ) )
1813, 14, 15mulgdir 17573 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  ( n  e.  ZZ  /\  m  e.  ZZ  /\  U  e.  B )
)  ->  ( (
n  +  m ) 
.x.  U )  =  ( ( n  .x.  U ) ( +g  `  W ) ( m 
.x.  U ) ) )
1910, 6, 4, 12, 18syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( n  +  m
)  .x.  U )  =  ( ( n 
.x.  U ) ( +g  `  W ) ( m  .x.  U
) ) )
209, 17, 193eqtr3d 2664 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( m  .x.  U
) ( +g  `  W
) ( n  .x.  U ) )  =  ( ( n  .x.  U ) ( +g  `  W ) ( m 
.x.  U ) ) )
2120adantllr 755 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  B  /\  z  e.  B
) )  /\  m  e.  ZZ )  /\  n  e.  ZZ )  ->  (
( m  .x.  U
) ( +g  `  W
) ( n  .x.  U ) )  =  ( ( n  .x.  U ) ( +g  `  W ) ( m 
.x.  U ) ) )
2221adantlr 751 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  B  /\  z  e.  B
) )  /\  m  e.  ZZ )  /\  y  =  ( m  .x.  U ) )  /\  n  e.  ZZ )  ->  ( ( m  .x.  U ) ( +g  `  W ) ( n 
.x.  U ) )  =  ( ( n 
.x.  U ) ( +g  `  W ) ( m  .x.  U
) ) )
2322adantr 481 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  /\  m  e.  ZZ )  /\  y  =  (
m  .x.  U )
)  /\  n  e.  ZZ )  /\  z  =  ( n  .x.  U ) )  -> 
( ( m  .x.  U ) ( +g  `  W ) ( n 
.x.  U ) )  =  ( ( n 
.x.  U ) ( +g  `  W ) ( m  .x.  U
) ) )
24 simpllr 799 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  /\  m  e.  ZZ )  /\  y  =  (
m  .x.  U )
)  /\  n  e.  ZZ )  /\  z  =  ( n  .x.  U ) )  -> 
y  =  ( m 
.x.  U ) )
25 simpr 477 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  /\  m  e.  ZZ )  /\  y  =  (
m  .x.  U )
)  /\  n  e.  ZZ )  /\  z  =  ( n  .x.  U ) )  -> 
z  =  ( n 
.x.  U ) )
2624, 25oveq12d 6668 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  /\  m  e.  ZZ )  /\  y  =  (
m  .x.  U )
)  /\  n  e.  ZZ )  /\  z  =  ( n  .x.  U ) )  -> 
( y ( +g  `  W ) z )  =  ( ( m 
.x.  U ) ( +g  `  W ) ( n  .x.  U
) ) )
2725, 24oveq12d 6668 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  /\  m  e.  ZZ )  /\  y  =  (
m  .x.  U )
)  /\  n  e.  ZZ )  /\  z  =  ( n  .x.  U ) )  -> 
( z ( +g  `  W ) y )  =  ( ( n 
.x.  U ) ( +g  `  W ) ( m  .x.  U
) ) )
2823, 26, 273eqtr4d 2666 . . . . 5  |-  ( ( ( ( ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  /\  m  e.  ZZ )  /\  y  =  (
m  .x.  U )
)  /\  n  e.  ZZ )  /\  z  =  ( n  .x.  U ) )  -> 
( y ( +g  `  W ) z )  =  ( z ( +g  `  W ) y ) )
29 simplll 798 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  B  /\  z  e.  B
) )  /\  m  e.  ZZ )  /\  y  =  ( m  .x.  U ) )  ->  ph )
30 simpr1r 1119 . . . . . . 7  |-  ( (
ph  /\  ( (
y  e.  B  /\  z  e.  B )  /\  m  e.  ZZ  /\  y  =  ( m 
.x.  U ) ) )  ->  z  e.  B )
31303anassrs 1290 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  B  /\  z  e.  B
) )  /\  m  e.  ZZ )  /\  y  =  ( m  .x.  U ) )  -> 
z  e.  B )
32 archiabllem.0 . . . . . . 7  |-  .0.  =  ( 0g `  W )
33 archiabllem.e . . . . . . 7  |-  .<_  =  ( le `  W )
34 archiabllem.t . . . . . . 7  |-  .<  =  ( lt `  W )
35 archiabllem.a . . . . . . 7  |-  ( ph  ->  W  e. Archi )
36 archiabllem1.p . . . . . . 7  |-  ( ph  ->  .0.  .<  U )
37 archiabllem1.s . . . . . . 7  |-  ( (
ph  /\  x  e.  B  /\  .0.  .<  x
)  ->  U  .<_  x )
3813, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 29746 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  E. n  e.  ZZ  z  =  ( n  .x.  U ) )
3929, 31, 38syl2anc 693 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  B  /\  z  e.  B
) )  /\  m  e.  ZZ )  /\  y  =  ( m  .x.  U ) )  ->  E. n  e.  ZZ  z  =  ( n  .x.  U ) )
4028, 39r19.29a 3078 . . . 4  |-  ( ( ( ( ph  /\  ( y  e.  B  /\  z  e.  B
) )  /\  m  e.  ZZ )  /\  y  =  ( m  .x.  U ) )  -> 
( y ( +g  `  W ) z )  =  ( z ( +g  `  W ) y ) )
4113, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 29746 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  E. m  e.  ZZ  y  =  ( m  .x.  U ) )
4241adantrr 753 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  ->  E. m  e.  ZZ  y  =  ( m  .x.  U ) )
4340, 42r19.29a 3078 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  W ) z )  =  ( z ( +g  `  W ) y ) )
4443ralrimivva 2971 . 2  |-  ( ph  ->  A. y  e.  B  A. z  e.  B  ( y ( +g  `  W ) z )  =  ( z ( +g  `  W ) y ) )
4513, 15isabl2 18201 . 2  |-  ( W  e.  Abel  <->  ( W  e. 
Grp  /\  A. y  e.  B  A. z  e.  B  ( y
( +g  `  W ) z )  =  ( z ( +g  `  W
) y ) ) )
463, 44, 45sylanbrc 698 1  |-  ( ph  ->  W  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    + caddc 9939   ZZcz 11377   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   ltcplt 16941   Grpcgrp 17422  .gcmg 17540   Abelcabl 18194  oGrpcogrp 29698  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-cmn 18195  df-abl 18196  df-omnd 29699  df-ogrp 29700  df-inftm 29732  df-archi 29733
This theorem is referenced by:  archiabl  29752
  Copyright terms: Public domain W3C validator