MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclrhm Structured version   Visualization version   GIF version

Theorem asclrhm 19342
Description: The scalar injection is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclrhm.a 𝐴 = (algSc‘𝑊)
asclrhm.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
asclrhm (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 RingHom 𝑊))

Proof of Theorem asclrhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2622 . 2 (1r𝐹) = (1r𝐹)
3 eqid 2622 . 2 (1r𝑊) = (1r𝑊)
4 eqid 2622 . 2 (.r𝐹) = (.r𝐹)
5 eqid 2622 . 2 (.r𝑊) = (.r𝑊)
6 asclrhm.f . . . 4 𝐹 = (Scalar‘𝑊)
76assasca 19321 . . 3 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
8 crngring 18558 . . 3 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
97, 8syl 17 . 2 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
10 assaring 19320 . 2 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
111, 2ringidcl 18568 . . . 4 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
12 asclrhm.a . . . . 5 𝐴 = (algSc‘𝑊)
13 eqid 2622 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1412, 6, 1, 13, 3asclval 19335 . . . 4 ((1r𝐹) ∈ (Base‘𝐹) → (𝐴‘(1r𝐹)) = ((1r𝐹)( ·𝑠𝑊)(1r𝑊)))
159, 11, 143syl 18 . . 3 (𝑊 ∈ AssAlg → (𝐴‘(1r𝐹)) = ((1r𝐹)( ·𝑠𝑊)(1r𝑊)))
16 assalmod 19319 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
17 eqid 2622 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
1817, 3ringidcl 18568 . . . . 5 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
1910, 18syl 17 . . . 4 (𝑊 ∈ AssAlg → (1r𝑊) ∈ (Base‘𝑊))
2017, 6, 13, 2lmodvs1 18891 . . . 4 ((𝑊 ∈ LMod ∧ (1r𝑊) ∈ (Base‘𝑊)) → ((1r𝐹)( ·𝑠𝑊)(1r𝑊)) = (1r𝑊))
2116, 19, 20syl2anc 693 . . 3 (𝑊 ∈ AssAlg → ((1r𝐹)( ·𝑠𝑊)(1r𝑊)) = (1r𝑊))
2215, 21eqtrd 2656 . 2 (𝑊 ∈ AssAlg → (𝐴‘(1r𝐹)) = (1r𝑊))
2317, 5, 3ringlidm 18571 . . . . . . . 8 ((𝑊 ∈ Ring ∧ (1r𝑊) ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)(1r𝑊)) = (1r𝑊))
2410, 19, 23syl2anc 693 . . . . . . 7 (𝑊 ∈ AssAlg → ((1r𝑊)(.r𝑊)(1r𝑊)) = (1r𝑊))
2524adantr 481 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((1r𝑊)(.r𝑊)(1r𝑊)) = (1r𝑊))
2625oveq2d 6666 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑦( ·𝑠𝑊)((1r𝑊)(.r𝑊)(1r𝑊))) = (𝑦( ·𝑠𝑊)(1r𝑊)))
2726oveq2d 6666 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥( ·𝑠𝑊)(𝑦( ·𝑠𝑊)((1r𝑊)(.r𝑊)(1r𝑊)))) = (𝑥( ·𝑠𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
28 simpl 473 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ AssAlg)
29 simprl 794 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹))
3019adantr 481 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r𝑊) ∈ (Base‘𝑊))
3116adantr 481 . . . . . . 7 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod)
32 simprr 796 . . . . . . 7 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹))
3317, 6, 13, 1lmodvscl 18880 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊)) → (𝑦( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))
3431, 32, 30, 33syl3anc 1326 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑦( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))
3517, 6, 1, 13, 5assaass 19317 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊) ∧ (𝑦( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)(1r𝑊))(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))) = (𝑥( ·𝑠𝑊)((1r𝑊)(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊)))))
3628, 29, 30, 34, 35syl13anc 1328 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥( ·𝑠𝑊)(1r𝑊))(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))) = (𝑥( ·𝑠𝑊)((1r𝑊)(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊)))))
3717, 6, 1, 13, 5assaassr 19318 . . . . . . 7 ((𝑊 ∈ AssAlg ∧ (𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((1r𝑊)(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))) = (𝑦( ·𝑠𝑊)((1r𝑊)(.r𝑊)(1r𝑊))))
3828, 32, 30, 30, 37syl13anc 1328 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((1r𝑊)(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))) = (𝑦( ·𝑠𝑊)((1r𝑊)(.r𝑊)(1r𝑊))))
3938oveq2d 6666 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥( ·𝑠𝑊)((1r𝑊)(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊)))) = (𝑥( ·𝑠𝑊)(𝑦( ·𝑠𝑊)((1r𝑊)(.r𝑊)(1r𝑊)))))
4036, 39eqtrd 2656 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥( ·𝑠𝑊)(1r𝑊))(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))) = (𝑥( ·𝑠𝑊)(𝑦( ·𝑠𝑊)((1r𝑊)(.r𝑊)(1r𝑊)))))
4117, 6, 13, 1, 4lmodvsass 18888 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑥(.r𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = (𝑥( ·𝑠𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
4231, 29, 32, 30, 41syl13anc 1328 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(.r𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = (𝑥( ·𝑠𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
4327, 40, 423eqtr4rd 2667 . . 3 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(.r𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
441, 4ringcl 18561 . . . . . 6 ((𝐹 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(.r𝐹)𝑦) ∈ (Base‘𝐹))
45443expb 1266 . . . . 5 ((𝐹 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(.r𝐹)𝑦) ∈ (Base‘𝐹))
469, 45sylan 488 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(.r𝐹)𝑦) ∈ (Base‘𝐹))
4712, 6, 1, 13, 3asclval 19335 . . . 4 ((𝑥(.r𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(.r𝐹)𝑦)) = ((𝑥(.r𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
4846, 47syl 17 . . 3 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(.r𝐹)𝑦)) = ((𝑥(.r𝐹)𝑦)( ·𝑠𝑊)(1r𝑊)))
4912, 6, 1, 13, 3asclval 19335 . . . . 5 (𝑥 ∈ (Base‘𝐹) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
5029, 49syl 17 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴𝑥) = (𝑥( ·𝑠𝑊)(1r𝑊)))
5112, 6, 1, 13, 3asclval 19335 . . . . 5 (𝑦 ∈ (Base‘𝐹) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
5232, 51syl 17 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴𝑦) = (𝑦( ·𝑠𝑊)(1r𝑊)))
5350, 52oveq12d 6668 . . 3 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴𝑥)(.r𝑊)(𝐴𝑦)) = ((𝑥( ·𝑠𝑊)(1r𝑊))(.r𝑊)(𝑦( ·𝑠𝑊)(1r𝑊))))
5443, 48, 533eqtr4d 2666 . 2 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(.r𝐹)𝑦)) = ((𝐴𝑥)(.r𝑊)(𝐴𝑦)))
5512, 6, 10, 16asclghm 19338 . 2 (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 GrpHom 𝑊))
561, 2, 3, 4, 5, 9, 10, 22, 54, 55isrhm2d 18728 1 (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 RingHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  1rcur 18501  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712  LModclmod 18863  AssAlgcasa 19309  algSccascl 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-lmod 18865  df-assa 19312  df-ascl 19314
This theorem is referenced by:  mplind  19502  evlslem1  19515  mpfind  19536  pf1ind  19719  mat2pmatmul  20536  mat2pmatlin  20540
  Copyright terms: Public domain W3C validator