| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. 2
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 2 | | eqid 2622 |
. 2
⊢
(1r‘𝐹) = (1r‘𝐹) |
| 3 | | eqid 2622 |
. 2
⊢
(1r‘𝑊) = (1r‘𝑊) |
| 4 | | eqid 2622 |
. 2
⊢
(.r‘𝐹) = (.r‘𝐹) |
| 5 | | eqid 2622 |
. 2
⊢
(.r‘𝑊) = (.r‘𝑊) |
| 6 | | asclrhm.f |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
| 7 | 6 | assasca 19321 |
. . 3
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ CRing) |
| 8 | | crngring 18558 |
. . 3
⊢ (𝐹 ∈ CRing → 𝐹 ∈ Ring) |
| 9 | 7, 8 | syl 17 |
. 2
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
| 10 | | assaring 19320 |
. 2
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) |
| 11 | 1, 2 | ringidcl 18568 |
. . . 4
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ (Base‘𝐹)) |
| 12 | | asclrhm.a |
. . . . 5
⊢ 𝐴 = (algSc‘𝑊) |
| 13 | | eqid 2622 |
. . . . 5
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 14 | 12, 6, 1, 13, 3 | asclval 19335 |
. . . 4
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → (𝐴‘(1r‘𝐹)) = ((1r‘𝐹)(
·𝑠 ‘𝑊)(1r‘𝑊))) |
| 15 | 9, 11, 14 | 3syl 18 |
. . 3
⊢ (𝑊 ∈ AssAlg → (𝐴‘(1r‘𝐹)) = ((1r‘𝐹)(
·𝑠 ‘𝑊)(1r‘𝑊))) |
| 16 | | assalmod 19319 |
. . . 4
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
| 17 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 18 | 17, 3 | ringidcl 18568 |
. . . . 5
⊢ (𝑊 ∈ Ring →
(1r‘𝑊)
∈ (Base‘𝑊)) |
| 19 | 10, 18 | syl 17 |
. . . 4
⊢ (𝑊 ∈ AssAlg →
(1r‘𝑊)
∈ (Base‘𝑊)) |
| 20 | 17, 6, 13, 2 | lmodvs1 18891 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧
(1r‘𝑊)
∈ (Base‘𝑊))
→ ((1r‘𝐹)( ·𝑠
‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
| 21 | 16, 19, 20 | syl2anc 693 |
. . 3
⊢ (𝑊 ∈ AssAlg →
((1r‘𝐹)(
·𝑠 ‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
| 22 | 15, 21 | eqtrd 2656 |
. 2
⊢ (𝑊 ∈ AssAlg → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) |
| 23 | 17, 5, 3 | ringlidm 18571 |
. . . . . . . 8
⊢ ((𝑊 ∈ Ring ∧
(1r‘𝑊)
∈ (Base‘𝑊))
→ ((1r‘𝑊)(.r‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
| 24 | 10, 19, 23 | syl2anc 693 |
. . . . . . 7
⊢ (𝑊 ∈ AssAlg →
((1r‘𝑊)(.r‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
| 25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((1r‘𝑊)(.r‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
| 26 | 25 | oveq2d 6666 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑦( ·𝑠
‘𝑊)((1r‘𝑊)(.r‘𝑊)(1r‘𝑊))) = (𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 27 | 26 | oveq2d 6666 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥( ·𝑠
‘𝑊)(𝑦(
·𝑠 ‘𝑊)((1r‘𝑊)(.r‘𝑊)(1r‘𝑊)))) = (𝑥( ·𝑠
‘𝑊)(𝑦(
·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 28 | | simpl 473 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ AssAlg) |
| 29 | | simprl 794 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹)) |
| 30 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r‘𝑊) ∈ (Base‘𝑊)) |
| 31 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod) |
| 32 | | simprr 796 |
. . . . . . 7
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹)) |
| 33 | 17, 6, 13, 1 | lmodvscl 18880 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝐹) ∧
(1r‘𝑊)
∈ (Base‘𝑊))
→ (𝑦(
·𝑠 ‘𝑊)(1r‘𝑊)) ∈ (Base‘𝑊)) |
| 34 | 31, 32, 30, 33 | syl3anc 1326 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑦( ·𝑠
‘𝑊)(1r‘𝑊)) ∈ (Base‘𝑊)) |
| 35 | 17, 6, 1, 13, 5 | assaass 19317 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧
(1r‘𝑊)
∈ (Base‘𝑊) ∧
(𝑦(
·𝑠 ‘𝑊)(1r‘𝑊)) ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)(1r‘𝑊))(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) = (𝑥( ·𝑠
‘𝑊)((1r‘𝑊)(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))))) |
| 36 | 28, 29, 30, 34, 35 | syl13anc 1328 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥( ·𝑠
‘𝑊)(1r‘𝑊))(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) = (𝑥( ·𝑠
‘𝑊)((1r‘𝑊)(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))))) |
| 37 | 17, 6, 1, 13, 5 | assaassr 19318 |
. . . . . . 7
⊢ ((𝑊 ∈ AssAlg ∧ (𝑦 ∈ (Base‘𝐹) ∧
(1r‘𝑊)
∈ (Base‘𝑊) ∧
(1r‘𝑊)
∈ (Base‘𝑊)))
→ ((1r‘𝑊)(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) = (𝑦( ·𝑠
‘𝑊)((1r‘𝑊)(.r‘𝑊)(1r‘𝑊)))) |
| 38 | 28, 32, 30, 30, 37 | syl13anc 1328 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((1r‘𝑊)(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) = (𝑦( ·𝑠
‘𝑊)((1r‘𝑊)(.r‘𝑊)(1r‘𝑊)))) |
| 39 | 38 | oveq2d 6666 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥( ·𝑠
‘𝑊)((1r‘𝑊)(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊)))) = (𝑥( ·𝑠
‘𝑊)(𝑦(
·𝑠 ‘𝑊)((1r‘𝑊)(.r‘𝑊)(1r‘𝑊))))) |
| 40 | 36, 39 | eqtrd 2656 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥( ·𝑠
‘𝑊)(1r‘𝑊))(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) = (𝑥( ·𝑠
‘𝑊)(𝑦(
·𝑠 ‘𝑊)((1r‘𝑊)(.r‘𝑊)(1r‘𝑊))))) |
| 41 | 17, 6, 13, 1, 4 | lmodvsass 18888 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑥(.r‘𝐹)𝑦)( ·𝑠
‘𝑊)(1r‘𝑊)) = (𝑥( ·𝑠
‘𝑊)(𝑦(
·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 42 | 31, 29, 32, 30, 41 | syl13anc 1328 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(.r‘𝐹)𝑦)( ·𝑠
‘𝑊)(1r‘𝑊)) = (𝑥( ·𝑠
‘𝑊)(𝑦(
·𝑠 ‘𝑊)(1r‘𝑊)))) |
| 43 | 27, 40, 42 | 3eqtr4rd 2667 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(.r‘𝐹)𝑦)( ·𝑠
‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠
‘𝑊)(1r‘𝑊))(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊)))) |
| 44 | 1, 4 | ringcl 18561 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(.r‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 45 | 44 | 3expb 1266 |
. . . . 5
⊢ ((𝐹 ∈ Ring ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(.r‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 46 | 9, 45 | sylan 488 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(.r‘𝐹)𝑦) ∈ (Base‘𝐹)) |
| 47 | 12, 6, 1, 13, 3 | asclval 19335 |
. . . 4
⊢ ((𝑥(.r‘𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(.r‘𝐹)𝑦)) = ((𝑥(.r‘𝐹)𝑦)( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 48 | 46, 47 | syl 17 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(.r‘𝐹)𝑦)) = ((𝑥(.r‘𝐹)𝑦)( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 49 | 12, 6, 1, 13, 3 | asclval 19335 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐹) → (𝐴‘𝑥) = (𝑥( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 50 | 29, 49 | syl 17 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘𝑥) = (𝑥( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 51 | 12, 6, 1, 13, 3 | asclval 19335 |
. . . . 5
⊢ (𝑦 ∈ (Base‘𝐹) → (𝐴‘𝑦) = (𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 52 | 32, 51 | syl 17 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘𝑦) = (𝑦( ·𝑠
‘𝑊)(1r‘𝑊))) |
| 53 | 50, 52 | oveq12d 6668 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴‘𝑥)(.r‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠
‘𝑊)(1r‘𝑊))(.r‘𝑊)(𝑦( ·𝑠
‘𝑊)(1r‘𝑊)))) |
| 54 | 43, 48, 53 | 3eqtr4d 2666 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(.r‘𝐹)𝑦)) = ((𝐴‘𝑥)(.r‘𝑊)(𝐴‘𝑦))) |
| 55 | 12, 6, 10, 16 | asclghm 19338 |
. 2
⊢ (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
| 56 | 1, 2, 3, 4, 5, 9, 10, 22, 54, 55 | isrhm2d 18728 |
1
⊢ (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 RingHom 𝑊)) |