MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatlin Structured version   Visualization version   GIF version

Theorem mat2pmatlin 20540
Description: The transformation of matrices into polynomial matrices is "linear", analogous to lmhmlin 19035. Since 𝐴 and 𝐶 have different scalar rings, 𝑇 cannot be a left module homomorphism as defined in df-lmhm 19022, see lmhmsca 19030. (Contributed by AV, 13-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
mat2pmatlin.k 𝐾 = (Base‘𝑅)
mat2pmatlin.s 𝑆 = (algSc‘𝑃)
mat2pmatlin.m · = ( ·𝑠𝐴)
mat2pmatlin.n × = ( ·𝑠𝐶)
Assertion
Ref Expression
mat2pmatlin (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))

Proof of Theorem mat2pmatlin
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
2 mat2pmatbas.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
32ply1assa 19569 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
4 mat2pmatlin.s . . . . . . . . . . 11 𝑆 = (algSc‘𝑃)
5 eqid 2622 . . . . . . . . . . 11 (Scalar‘𝑃) = (Scalar‘𝑃)
64, 5asclrhm 19342 . . . . . . . . . 10 (𝑃 ∈ AssAlg → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
71, 3, 63syl 18 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ ((Scalar‘𝑃) RingHom 𝑃))
82ply1sca 19623 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
98adantl 482 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
109oveq1d 6665 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
117, 10eleqtrrd 2704 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1211adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
1312adantr 481 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑆 ∈ (𝑅 RingHom 𝑃))
14 mat2pmatlin.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
1514eleq2i 2693 . . . . . . . . 9 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1615biimpi 206 . . . . . . . 8 (𝑋𝐾𝑋 ∈ (Base‘𝑅))
1716adantr 481 . . . . . . 7 ((𝑋𝐾𝑌𝐵) → 𝑋 ∈ (Base‘𝑅))
1817ad2antlr 763 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑋 ∈ (Base‘𝑅))
19 mat2pmatbas.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
20 eqid 2622 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
21 mat2pmatbas.b . . . . . . 7 𝐵 = (Base‘𝐴)
22 simprl 794 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
23 simpr 477 . . . . . . . 8 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
2423adantl 482 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
25 simplrr 801 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑌𝐵)
2619, 20, 21, 22, 24, 25matecld 20232 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑌𝑗) ∈ (Base‘𝑅))
27 eqid 2622 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2622 . . . . . . 7 (.r𝑃) = (.r𝑃)
2920, 27, 28rhmmul 18727 . . . . . 6 ((𝑆 ∈ (𝑅 RingHom 𝑃) ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑖𝑌𝑗) ∈ (Base‘𝑅)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
3013, 18, 26, 29syl3anc 1326 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
31 crngring 18558 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3231ad2antlr 763 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑅 ∈ Ring)
3332adantr 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
34 simpr 477 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋𝐾𝑌𝐵))
3534adantr 481 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐾𝑌𝐵))
36 simpr 477 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
37 mat2pmatlin.m . . . . . . . 8 · = ( ·𝑠𝐴)
3819, 21, 14, 37, 27matvscacell 20242 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐾𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
3933, 35, 36, 38syl3anc 1326 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋 · 𝑌)𝑗) = (𝑋(.r𝑅)(𝑖𝑌𝑗)))
4039fveq2d 6195 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = (𝑆‘(𝑋(.r𝑅)(𝑖𝑌𝑗))))
4131anim2i 593 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
42 simpr 477 . . . . . . . . 9 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
4341, 42anim12i 590 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
44 df-3an 1039 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵))
4543, 44sylibr 224 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵))
46 mat2pmatbas.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
4746, 19, 21, 2, 4mat2pmatvalel 20530 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4845, 47sylan 488 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑌)𝑗) = (𝑆‘(𝑖𝑌𝑗)))
4948oveq2d 6666 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑆‘(𝑖𝑌𝑗))))
5030, 40, 493eqtr4d 2666 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
51 simpll 790 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑁 ∈ Fin)
5251adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
5314, 19, 21, 37matvscl 20237 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5441, 53sylan 488 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑋 · 𝑌) ∈ 𝐵)
5554adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋 · 𝑌) ∈ 𝐵)
5646, 19, 21, 2, 4mat2pmatvalel 20530 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
5752, 33, 55, 36, 56syl31anc 1329 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑆‘(𝑖(𝑋 · 𝑌)𝑗)))
582ply1ring 19618 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5931, 58syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
6059ad2antlr 763 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → 𝑃 ∈ Ring)
6160adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑃 ∈ Ring)
6231adantl 482 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
63 simpl 473 . . . . . . . 8 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
64 eqid 2622 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
652, 4, 14, 64ply1sclcl 19656 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐾) → (𝑆𝑋) ∈ (Base‘𝑃))
6662, 63, 65syl2an 494 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑆𝑋) ∈ (Base‘𝑃))
67 mat2pmatbas.c . . . . . . . . 9 𝐶 = (𝑁 Mat 𝑃)
68 mat2pmatbas0.h . . . . . . . . 9 𝐻 = (Base‘𝐶)
6946, 19, 21, 2, 67, 68mat2pmatbas0 20532 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐵) → (𝑇𝑌) ∈ 𝐻)
7045, 69syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇𝑌) ∈ 𝐻)
7166, 70jca 554 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
7271adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻))
73 mat2pmatlin.n . . . . . 6 × = ( ·𝑠𝐶)
7467, 68, 64, 73, 28matvscacell 20242 . . . . 5 ((𝑃 ∈ Ring ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7561, 72, 36, 74syl3anc 1326 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗) = ((𝑆𝑋)(.r𝑃)(𝑖(𝑇𝑌)𝑗)))
7650, 57, 753eqtr4d 2666 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7776ralrimivva 2971 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗))
7846, 19, 21, 2, 67, 68mat2pmatbas0 20532 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
7951, 32, 54, 78syl3anc 1326 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) ∈ 𝐻)
8064, 67, 68, 73matvscl 20237 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑆𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑌) ∈ 𝐻)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8151, 60, 71, 80syl21anc 1325 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻)
8267, 68eqmat 20230 . . 3 (((𝑇‘(𝑋 · 𝑌)) ∈ 𝐻 ∧ ((𝑆𝑋) × (𝑇𝑌)) ∈ 𝐻) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8379, 81, 82syl2anc 693 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → ((𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇‘(𝑋 · 𝑌))𝑗) = (𝑖((𝑆𝑋) × (𝑇𝑌))𝑗)))
8477, 83mpbird 247 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712  AssAlgcasa 19309  algSccascl 19311  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-assa 19312  df-ascl 19314  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mat2pmat 20512
This theorem is referenced by:  cpmidgsumm2pm  20674
  Copyright terms: Public domain W3C validator