MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem15 Structured version   Visualization version   GIF version

Theorem axlowdimlem15 25836
Description: Lemma for axlowdim 25841. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem15.1 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
Assertion
Ref Expression
axlowdimlem15 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Distinct variable group:   𝑖,𝑁
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem axlowdimlem15
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21axlowdimlem7 25828 . . . . 5 (𝑁 ∈ (ℤ‘3) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
32adantr 481 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ (𝔼‘𝑁))
4 eluzge3nn 11730 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
5 eqid 2622 . . . . . 6 ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))
65axlowdimlem10 25831 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
74, 6sylan 488 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) ∈ (𝔼‘𝑁))
83, 7ifcld 4131 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈ (𝔼‘𝑁))
9 axlowdimlem15.1 . . 3 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))))
108, 9fmptd 6385 . 2 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁))
11 eqeq1 2626 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 = 1 ↔ 𝑗 = 1))
12 oveq1 6657 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
1312opeq1d 4408 . . . . . . . . . 10 (𝑖 = 𝑗 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑗 + 1), 1⟩)
1413sneqd 4189 . . . . . . . . 9 (𝑖 = 𝑗 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑗 + 1), 1⟩})
1512sneqd 4189 . . . . . . . . . . 11 (𝑖 = 𝑗 → {(𝑖 + 1)} = {(𝑗 + 1)})
1615difeq2d 3728 . . . . . . . . . 10 (𝑖 = 𝑗 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑗 + 1)}))
1716xpeq1d 5138 . . . . . . . . 9 (𝑖 = 𝑗 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
1814, 17uneq12d 3768 . . . . . . . 8 (𝑖 = 𝑗 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
1911, 18ifbieq2d 4111 . . . . . . 7 (𝑖 = 𝑗 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
20 snex 4908 . . . . . . . . 9 {⟨3, -1⟩} ∈ V
21 ovex 6678 . . . . . . . . . . 11 (1...𝑁) ∈ V
22 difexg 4808 . . . . . . . . . . 11 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {3}) ∈ V)
2321, 22ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ {3}) ∈ V
24 snex 4908 . . . . . . . . . 10 {0} ∈ V
2523, 24xpex 6962 . . . . . . . . 9 (((1...𝑁) ∖ {3}) × {0}) ∈ V
2620, 25unex 6956 . . . . . . . 8 ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈ V
27 snex 4908 . . . . . . . . 9 {⟨(𝑗 + 1), 1⟩} ∈ V
28 difexg 4808 . . . . . . . . . . 11 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(𝑗 + 1)}) ∈ V)
2921, 28ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑗 + 1)}) ∈ V
3029, 24xpex 6962 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}) ∈ V
3127, 30unex 6956 . . . . . . . 8 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ∈ V
3226, 31ifex 4156 . . . . . . 7 if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) ∈ V
3319, 9, 32fvmpt 6282 . . . . . 6 (𝑗 ∈ (1...(𝑁 − 1)) → (𝐹𝑗) = if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))))
34 eqeq1 2626 . . . . . . . 8 (𝑖 = 𝑘 → (𝑖 = 1 ↔ 𝑘 = 1))
35 oveq1 6657 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
3635opeq1d 4408 . . . . . . . . . 10 (𝑖 = 𝑘 → ⟨(𝑖 + 1), 1⟩ = ⟨(𝑘 + 1), 1⟩)
3736sneqd 4189 . . . . . . . . 9 (𝑖 = 𝑘 → {⟨(𝑖 + 1), 1⟩} = {⟨(𝑘 + 1), 1⟩})
3835sneqd 4189 . . . . . . . . . . 11 (𝑖 = 𝑘 → {(𝑖 + 1)} = {(𝑘 + 1)})
3938difeq2d 3728 . . . . . . . . . 10 (𝑖 = 𝑘 → ((1...𝑁) ∖ {(𝑖 + 1)}) = ((1...𝑁) ∖ {(𝑘 + 1)}))
4039xpeq1d 5138 . . . . . . . . 9 (𝑖 = 𝑘 → (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
4137, 40uneq12d 3768 . . . . . . . 8 (𝑖 = 𝑘 → ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
4234, 41ifbieq2d 4111 . . . . . . 7 (𝑖 = 𝑘 → if(𝑖 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑖 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
43 snex 4908 . . . . . . . . 9 {⟨(𝑘 + 1), 1⟩} ∈ V
44 difexg 4808 . . . . . . . . . . 11 ((1...𝑁) ∈ V → ((1...𝑁) ∖ {(𝑘 + 1)}) ∈ V)
4521, 44ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ {(𝑘 + 1)}) ∈ V
4645, 24xpex 6962 . . . . . . . . 9 (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) ∈ V
4743, 46unex 6956 . . . . . . . 8 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) ∈ V
4826, 47ifex 4156 . . . . . . 7 if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ∈ V
4942, 9, 48fvmpt 6282 . . . . . 6 (𝑘 ∈ (1...(𝑁 − 1)) → (𝐹𝑘) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
5033, 49eqeqan12d 2638 . . . . 5 ((𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
5150adantl 482 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) ↔ if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))))
52 eqtr3 2643 . . . . . 6 ((𝑗 = 1 ∧ 𝑘 = 1) → 𝑗 = 𝑘)
53522a1d 26 . . . . 5 ((𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
54 eqid 2622 . . . . . . . . . . 11 ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))
551, 54axlowdimlem13 25834 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5655neneqd 2799 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ¬ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
5756pm2.21d 118 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
5857adantrl 752 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
594, 58sylan 488 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
60 iftrue 4092 . . . . . . . 8 (𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
61 iffalse 4095 . . . . . . . 8 𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))
6260, 61eqeqan12d 2638 . . . . . . 7 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
6362imbi1d 331 . . . . . 6 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
6459, 63syl5ibr 236 . . . . 5 ((𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
65 eqid 2622 . . . . . . . . . . . 12 ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))
661, 65axlowdimlem13 25834 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) ≠ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
6766necomd 2849 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) ≠ ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6867neneqd 2799 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ¬ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
6968pm2.21d 118 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
704, 69sylan 488 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
7170adantrr 753 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘))
72 iffalse 4095 . . . . . . . 8 𝑗 = 1 → if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})))
73 iftrue 4092 . . . . . . . 8 (𝑘 = 1 → if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})))
7472, 73eqeqan12d 2638 . . . . . . 7 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))))
7574imbi1d 331 . . . . . 6 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})) → 𝑗 = 𝑘)))
7671, 75syl5ibr 236 . . . . 5 ((¬ 𝑗 = 1 ∧ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
7765, 54axlowdimlem14 25835 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
78773expb 1266 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
794, 78sylan 488 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘))
8072, 61eqeqan12d 2638 . . . . . . 7 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) ↔ ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))
8180imbi1d 331 . . . . . 6 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘) ↔ (({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0})) = ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) → 𝑗 = 𝑘)))
8279, 81syl5ibr 236 . . . . 5 ((¬ 𝑗 = 1 ∧ ¬ 𝑘 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘)))
8353, 64, 76, 824cases 990 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → (if(𝑗 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑗 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑗 + 1)}) × {0}))) = if(𝑘 = 1, ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0})), ({⟨(𝑘 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) → 𝑗 = 𝑘))
8451, 83sylbid 230 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (𝑗 ∈ (1...(𝑁 − 1)) ∧ 𝑘 ∈ (1...(𝑁 − 1)))) → ((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
8584ralrimivva 2971 . 2 (𝑁 ∈ (ℤ‘3) → ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘))
86 dff13 6512 . 2 (𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝐹:(1...(𝑁 − 1))⟶(𝔼‘𝑁) ∧ ∀𝑗 ∈ (1...(𝑁 − 1))∀𝑘 ∈ (1...(𝑁 − 1))((𝐹𝑗) = (𝐹𝑘) → 𝑗 = 𝑘)))
8710, 85, 86sylanbrc 698 1 (𝑁 ∈ (ℤ‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cun 3572  ifcif 4086  {csn 4177  cop 4183  cmpt 4729   × cxp 5112  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  -cneg 10267  cn 11020  3c3 11071  cuz 11687  ...cfz 12326  𝔼cee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-ee 25771
This theorem is referenced by:  axlowdim  25841
  Copyright terms: Public domain W3C validator