| Step | Hyp | Ref
| Expression |
| 1 | | uzuzle23 11729 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈
(ℤ≥‘2)) |
| 2 | | 0re 10040 |
. . . . 5
⊢ 0 ∈
ℝ |
| 3 | 2, 2 | axlowdimlem5 25826 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → ({〈1, 0〉, 〈2, 0〉}
∪ ((3...𝑁) ×
{0})) ∈ (𝔼‘𝑁)) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ({〈1, 0〉, 〈2, 0〉}
∪ ((3...𝑁) ×
{0})) ∈ (𝔼‘𝑁)) |
| 5 | | 1re 10039 |
. . . . 5
⊢ 1 ∈
ℝ |
| 6 | 5, 2 | axlowdimlem5 25826 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → ({〈1, 1〉, 〈2, 0〉}
∪ ((3...𝑁) ×
{0})) ∈ (𝔼‘𝑁)) |
| 7 | 1, 6 | syl 17 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ({〈1, 1〉, 〈2, 0〉}
∪ ((3...𝑁) ×
{0})) ∈ (𝔼‘𝑁)) |
| 8 | 2, 5 | axlowdimlem5 25826 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → ({〈1, 0〉, 〈2, 1〉}
∪ ((3...𝑁) ×
{0})) ∈ (𝔼‘𝑁)) |
| 9 | 1, 8 | syl 17 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ({〈1, 0〉, 〈2, 1〉}
∪ ((3...𝑁) ×
{0})) ∈ (𝔼‘𝑁)) |
| 10 | | eqid 2622 |
. . . 4
⊢ (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
= (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})))) |
| 11 | 10 | axlowdimlem15 25836 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁)) |
| 12 | | eqid 2622 |
. . . . . 6
⊢
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) = ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})) |
| 13 | | eqid 2622 |
. . . . . 6
⊢
({〈(𝑖 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑖 + 1)}) ×
{0})) = ({〈(𝑖 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑖 + 1)}) ×
{0})) |
| 14 | | eqid 2622 |
. . . . . 6
⊢
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) = ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})) |
| 15 | 12, 13, 14, 2, 2 | axlowdimlem17 25838 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 16 | | eqid 2622 |
. . . . . 6
⊢
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) = ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})) |
| 17 | 12, 13, 16, 5, 2 | axlowdimlem17 25838 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 18 | | eqid 2622 |
. . . . . 6
⊢
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) = ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0})) |
| 19 | 12, 13, 18, 2, 5 | axlowdimlem17 25838 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈1, 0〉, 〈2, 1〉} ∪
((3...𝑁) ×
{0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 20 | | 1zzd 11408 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → 1 ∈ ℤ) |
| 21 | | peano2zm 11420 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 22 | 21 | 3ad2ant2 1083 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → (𝑁 − 1) ∈ ℤ) |
| 23 | | 2m1e1 11135 |
. . . . . . . . . . . . . . 15
⊢ (2
− 1) = 1 |
| 24 | | 2re 11090 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
| 25 | | 3re 11094 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 3 ∈
ℝ |
| 26 | | 2lt3 11195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 <
3 |
| 27 | 24, 25, 26 | ltleii 10160 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≤
3 |
| 28 | | zre 11381 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
| 29 | | letr 10131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3
≤ 𝑁) → 2 ≤ 𝑁)) |
| 30 | 24, 25, 29 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℝ → ((2 ≤
3 ∧ 3 ≤ 𝑁) → 2
≤ 𝑁)) |
| 31 | 28, 30 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → ((2 ≤
3 ∧ 3 ≤ 𝑁) → 2
≤ 𝑁)) |
| 32 | 27, 31 | mpani 712 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℤ → (3 ≤
𝑁 → 2 ≤ 𝑁)) |
| 33 | 32 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 3 ≤
𝑁) → 2 ≤ 𝑁) |
| 34 | 33 | 3adant1 1079 |
. . . . . . . . . . . . . . . 16
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁) |
| 35 | 28 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . 17
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 36 | | lesub1 10522 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ ∧ 1 ∈ ℝ) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1))) |
| 37 | 24, 5, 36 | mp3an13 1415 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℝ → (2 ≤
𝑁 ↔ (2 − 1) ≤
(𝑁 −
1))) |
| 38 | 35, 37 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → (2 ≤ 𝑁 ↔ (2 − 1) ≤ (𝑁 − 1))) |
| 39 | 34, 38 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → (2 − 1) ≤ (𝑁 − 1)) |
| 40 | 23, 39 | syl5eqbrr 4689 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → 1 ≤ (𝑁 − 1)) |
| 41 | 20, 22, 40 | 3jca 1242 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 3 ≤ 𝑁) → (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧
1 ≤ (𝑁 −
1))) |
| 42 | | eluz2 11693 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤
𝑁)) |
| 43 | | eluz2 11693 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧
1 ≤ (𝑁 −
1))) |
| 44 | 41, 42, 43 | 3imtr4i 281 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 1) ∈
(ℤ≥‘1)) |
| 45 | | eluzfz1 12348 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑁 − 1))) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → 1 ∈ (1...(𝑁 − 1))) |
| 47 | 46 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 1 ∈ (1...(𝑁 − 1))) |
| 48 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → (𝑘 = 1 ↔ 1 = 1)) |
| 49 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) |
| 50 | 49 | opeq1d 4408 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → 〈(𝑘 + 1), 1〉 = 〈(1 + 1),
1〉) |
| 51 | 50 | sneqd 4189 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → {〈(𝑘 + 1), 1〉} = {〈(1 +
1), 1〉}) |
| 52 | 49 | sneqd 4189 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → {(𝑘 + 1)} = {(1 + 1)}) |
| 53 | 52 | difeq2d 3728 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(1 + 1)})) |
| 54 | 53 | xpeq1d 5138 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(1 + 1)}) ×
{0})) |
| 55 | 51, 54 | uneq12d 3768 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) =
({〈(1 + 1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) ×
{0}))) |
| 56 | 48, 55 | ifbieq2d 4111 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))) = if(1 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(1 + 1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) ×
{0})))) |
| 57 | | snex 4908 |
. . . . . . . . . . . . 13
⊢ {〈3,
-1〉} ∈ V |
| 58 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢
(1...𝑁) ∈
V |
| 59 | | difexg 4808 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∈ V
→ ((1...𝑁) ∖
{3}) ∈ V) |
| 60 | 58, 59 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((1...𝑁) ∖
{3}) ∈ V |
| 61 | | snex 4908 |
. . . . . . . . . . . . . 14
⊢ {0}
∈ V |
| 62 | 60, 61 | xpex 6962 |
. . . . . . . . . . . . 13
⊢
(((1...𝑁) ∖
{3}) × {0}) ∈ V |
| 63 | 57, 62 | unex 6956 |
. . . . . . . . . . . 12
⊢
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ∈
V |
| 64 | | snex 4908 |
. . . . . . . . . . . . 13
⊢ {〈(1
+ 1), 1〉} ∈ V |
| 65 | | difexg 4808 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∈ V
→ ((1...𝑁) ∖ {(1
+ 1)}) ∈ V) |
| 66 | 58, 65 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((1...𝑁) ∖ {(1
+ 1)}) ∈ V |
| 67 | 66, 61 | xpex 6962 |
. . . . . . . . . . . . 13
⊢
(((1...𝑁) ∖
{(1 + 1)}) × {0}) ∈ V |
| 68 | 64, 67 | unex 6956 |
. . . . . . . . . . . 12
⊢
({〈(1 + 1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0})) ∈
V |
| 69 | 63, 68 | ifex 4156 |
. . . . . . . . . . 11
⊢ if(1 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(1 +
1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) ∈
V |
| 70 | 56, 10, 69 | fvmpt 6282 |
. . . . . . . . . 10
⊢ (1 ∈
(1...(𝑁 − 1)) →
((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1) = if(1 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(1 +
1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) ×
{0})))) |
| 71 | 47, 70 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1) = if(1 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(1 + 1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) ×
{0})))) |
| 72 | | eqid 2622 |
. . . . . . . . . 10
⊢ 1 =
1 |
| 73 | 72 | iftruei 4093 |
. . . . . . . . 9
⊢ if(1 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(1 +
1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) × {0}))) =
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) ×
{0})) |
| 74 | 71, 73 | syl6eq 2672 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1) = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) ×
{0}))) |
| 75 | 74 | opeq1d 4408 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 =
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 76 | | 2eluzge1 11734 |
. . . . . . . . . . . . 13
⊢ 2 ∈
(ℤ≥‘1) |
| 77 | | fzss1 12380 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
| 78 | 76, 77 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(2...(𝑁 − 1))
⊆ (1...(𝑁 −
1)) |
| 79 | 78 | sseli 3599 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (2...(𝑁 − 1)) → 𝑖 ∈ (1...(𝑁 − 1))) |
| 80 | 79 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 𝑖 ∈ (1...(𝑁 − 1))) |
| 81 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1)) |
| 82 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1)) |
| 83 | 82 | opeq1d 4408 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → 〈(𝑘 + 1), 1〉 = 〈(𝑖 + 1), 1〉) |
| 84 | 83 | sneqd 4189 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → {〈(𝑘 + 1), 1〉} = {〈(𝑖 + 1), 1〉}) |
| 85 | 82 | sneqd 4189 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑖 → {(𝑘 + 1)} = {(𝑖 + 1)}) |
| 86 | 85 | difeq2d 3728 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → ((1...𝑁) ∖ {(𝑘 + 1)}) = ((1...𝑁) ∖ {(𝑖 + 1)})) |
| 87 | 86 | xpeq1d 5138 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}) = (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})) |
| 88 | 84, 87 | uneq12d 3768 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0})) = ({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) ×
{0}))) |
| 89 | 81, 88 | ifbieq2d 4111 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))) =
if(𝑖 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))) |
| 90 | | snex 4908 |
. . . . . . . . . . . . 13
⊢
{〈(𝑖 + 1),
1〉} ∈ V |
| 91 | | difexg 4808 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∈ V
→ ((1...𝑁) ∖
{(𝑖 + 1)}) ∈
V) |
| 92 | 58, 91 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((1...𝑁) ∖
{(𝑖 + 1)}) ∈
V |
| 93 | 92, 61 | xpex 6962 |
. . . . . . . . . . . . 13
⊢
(((1...𝑁) ∖
{(𝑖 + 1)}) × {0})
∈ V |
| 94 | 90, 93 | unex 6956 |
. . . . . . . . . . . 12
⊢
({〈(𝑖 + 1),
1〉} ∪ (((1...𝑁)
∖ {(𝑖 + 1)}) ×
{0})) ∈ V |
| 95 | 63, 94 | ifex 4156 |
. . . . . . . . . . 11
⊢ if(𝑖 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑖 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0}))) ∈
V |
| 96 | 89, 10, 95 | fvmpt 6282 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...(𝑁 − 1)) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖) = if(𝑖 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑖 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))) |
| 97 | 80, 96 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖) = if(𝑖 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑖 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))) |
| 98 | | 1lt2 11194 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
2 |
| 99 | 5, 24 | ltnlei 10158 |
. . . . . . . . . . . . . . . 16
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
| 100 | 98, 99 | mpbi 220 |
. . . . . . . . . . . . . . 15
⊢ ¬ 2
≤ 1 |
| 101 | 100 | intnanr 961 |
. . . . . . . . . . . . . 14
⊢ ¬ (2
≤ 1 ∧ 1 ≤ (𝑁
− 1)) |
| 102 | | eluzelz 11697 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
| 103 | 102, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 − 1) ∈ ℤ) |
| 104 | | 1z 11407 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
| 105 | | 2z 11409 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
| 106 | | elfz 12332 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (1 ∈
(2...(𝑁 − 1)) ↔
(2 ≤ 1 ∧ 1 ≤ (𝑁
− 1)))) |
| 107 | 104, 105,
106 | mp3an12 1414 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈ ℤ
→ (1 ∈ (2...(𝑁
− 1)) ↔ (2 ≤ 1 ∧ 1 ≤ (𝑁 − 1)))) |
| 108 | 103, 107 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘3) → (1 ∈ (2...(𝑁 − 1)) ↔ (2 ≤ 1 ∧ 1 ≤
(𝑁 −
1)))) |
| 109 | 101, 108 | mtbiri 317 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) → ¬ 1 ∈ (2...(𝑁 − 1))) |
| 110 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 1 → (𝑖 ∈ (2...(𝑁 − 1)) ↔ 1 ∈ (2...(𝑁 − 1)))) |
| 111 | 110 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (¬ 𝑖 ∈ (2...(𝑁 − 1)) ↔ ¬ 1 ∈
(2...(𝑁 −
1)))) |
| 112 | 109, 111 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑖 = 1 → ¬ 𝑖 ∈ (2...(𝑁 − 1)))) |
| 113 | 112 | con2d 129 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑖 ∈ (2...(𝑁 − 1)) → ¬ 𝑖 = 1)) |
| 114 | 113 | imp 445 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ¬ 𝑖 = 1) |
| 115 | 114 | iffalsed 4097 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) × {0}))) =
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) ×
{0}))) |
| 116 | 97, 115 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖) =
({〈(𝑖 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑖 + 1)}) ×
{0}))) |
| 117 | 116 | opeq1d 4408 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 = 〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 118 | 75, 117 | breq12d 4666 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ↔
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 119 | 74 | opeq1d 4408 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 =
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 120 | 116 | opeq1d 4408 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 = 〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 121 | 119, 120 | breq12d 4666 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ↔
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 122 | 46, 70 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1) = if(1 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(1 + 1), 1〉} ∪ (((1...𝑁) ∖ {(1 + 1)}) ×
{0})))) |
| 123 | 122, 73 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1) = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) ×
{0}))) |
| 124 | 123 | opeq1d 4408 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 =
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 125 | 124 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 =
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 126 | 116 | opeq1d 4408 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 = 〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 127 | 125, 126 | breq12d 4666 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ↔
〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉)) |
| 128 | 118, 121,
127 | 3anbi123d 1399 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → ((〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) ↔
(〈({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑖 + 1)}) × {0})),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈1, 0〉, 〈2, 1〉} ∪
((3...𝑁) ×
{0}))〉Cgr〈({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉))) |
| 129 | 15, 17, 19, 128 | mpbir3and 1245 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑖 ∈ (2...(𝑁 − 1))) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉)) |
| 130 | 129 | ralrimiva 2966 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉)) |
| 131 | 14, 16, 18 | axlowdimlem6 25827 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) → ¬ (({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 132 | 1, 131 | syl 17 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ¬ (({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 133 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉 =
〈((𝑘 ∈
(1...(𝑁 − 1)) ↦
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 134 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 135 | 133, 134 | breq12d 4666 |
. . . . . . 7
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ↔ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 136 | 135 | 3anbi1d 1403 |
. . . . . 6
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → ((〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ↔ (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉))) |
| 137 | 136 | ralbidv 2986 |
. . . . 5
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉))) |
| 138 | | breq1 4656 |
. . . . . . 7
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (𝑥
Btwn 〈𝑦, 𝑧〉 ↔ ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑦, 𝑧〉)) |
| 139 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈𝑧, 𝑥〉 = 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉) |
| 140 | 139 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (𝑦
Btwn 〈𝑧, 𝑥〉 ↔ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉)) |
| 141 | | opeq1 4402 |
. . . . . . . 8
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈𝑥, 𝑦〉 = 〈({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})), 𝑦〉) |
| 142 | 141 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (𝑧
Btwn 〈𝑥, 𝑦〉 ↔ 𝑧 Btwn 〈({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})), 𝑦〉)) |
| 143 | 138, 140,
142 | 3orbi123d 1398 |
. . . . . 6
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → ((𝑥
Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉) ↔ (({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈𝑦,
𝑧〉 ∨ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 ∨ 𝑧 Btwn
〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉))) |
| 144 | 143 | notbid 308 |
. . . . 5
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉) ↔ ¬ (({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 ∨ 𝑧 Btwn
〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉))) |
| 145 | 137, 144 | 3anbi23d 1402 |
. . . 4
⊢ (𝑥 = ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 ∨ 𝑧 Btwn
〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉)))) |
| 146 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉 =
〈((𝑘 ∈
(1...(𝑁 − 1)) ↦
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 147 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 148 | 146, 147 | breq12d 4666 |
. . . . . . 7
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ↔ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 149 | 148 | 3anbi2d 1404 |
. . . . . 6
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → ((〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ↔ (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉))) |
| 150 | 149 | ralbidv 2986 |
. . . . 5
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉))) |
| 151 | | opeq1 4402 |
. . . . . . . 8
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈𝑦, 𝑧〉 = 〈({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})), 𝑧〉) |
| 152 | 151 | breq2d 4665 |
. . . . . . 7
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑦, 𝑧〉 ↔ ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
𝑧〉)) |
| 153 | | breq1 4656 |
. . . . . . 7
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (𝑦
Btwn 〈𝑧, ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ↔ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑧, ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0}))〉)) |
| 154 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → 〈({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
𝑦〉 = 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 155 | 154 | breq2d 4665 |
. . . . . . 7
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (𝑧
Btwn 〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉 ↔ 𝑧 Btwn 〈({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉)) |
| 156 | 152, 153,
155 | 3orbi123d 1398 |
. . . . . 6
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → ((({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 ∨ 𝑧 Btwn
〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉) ↔ (({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
𝑧〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑧, ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0}))〉 ∨ 𝑧
Btwn 〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉))) |
| 157 | 156 | notbid 308 |
. . . . 5
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (¬ (({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) × {0})) Btwn
〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 ∨ 𝑧 Btwn
〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉) ↔ ¬ (({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑧〉 ∨ ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈𝑧,
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ 𝑧 Btwn 〈({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉))) |
| 158 | 150, 157 | 3anbi23d 1402 |
. . . 4
⊢ (𝑦 = ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) → (((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 ∨ 𝑧 Btwn
〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑦〉)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑧〉 ∨ ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈𝑧,
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ 𝑧 Btwn 〈({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)))) |
| 159 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉 =
〈((𝑘 ∈
(1...(𝑁 − 1)) ↦
if(𝑘 = 1, ({〈3,
-1〉} ∪ (((1...𝑁)
∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) × {0}))))‘1), ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 160 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 161 | 159, 160 | breq12d 4666 |
. . . . . . 7
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉 ↔ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉)) |
| 162 | 161 | 3anbi3d 1405 |
. . . . . 6
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → ((〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ↔ (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉))) |
| 163 | 162 | ralbidv 2986 |
. . . . 5
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉))) |
| 164 | | opeq2 4403 |
. . . . . . . 8
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → 〈({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
𝑧〉 = 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) |
| 165 | 164 | breq2d 4665 |
. . . . . . 7
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn
〈({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑧〉 ↔ ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉)) |
| 166 | | opeq1 4402 |
. . . . . . . 8
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → 〈𝑧, ({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) ×
{0}))〉 = 〈({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) |
| 167 | 166 | breq2d 4665 |
. . . . . . 7
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈𝑧, ({〈1, 0〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0}))〉 ↔ ({〈1, 1〉, 〈2, 0〉} ∪
((3...𝑁) × {0})) Btwn
〈({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 168 | | breq1 4656 |
. . . . . . 7
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (𝑧
Btwn 〈({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ↔ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) |
| 169 | 165, 167,
168 | 3orbi123d 1398 |
. . . . . 6
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → ((({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn
〈({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑧〉 ∨ ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈𝑧,
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ 𝑧 Btwn 〈({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) ↔ (({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉))) |
| 170 | 169 | notbid 308 |
. . . . 5
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (¬ (({〈1, 0〉, 〈2, 0〉} ∪
((3...𝑁) × {0})) Btwn
〈({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑧〉 ∨ ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈𝑧,
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ 𝑧 Btwn 〈({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉) ↔ ¬
(({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉))) |
| 171 | 163, 170 | 3anbi23d 1402 |
. . . 4
⊢ (𝑧 = ({〈1, 0〉, 〈2,
1〉} ∪ ((3...𝑁)
× {0})) → (((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), 𝑧〉 ∨ ({〈1, 1〉, 〈2,
0〉} ∪ ((3...𝑁)
× {0})) Btwn 〈𝑧,
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ 𝑧 Btwn 〈({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) ∧ ¬
(({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉)))) |
| 172 | 145, 158,
171 | rspc3ev 3326 |
. . 3
⊢
(((({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) ∧ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) ×
{0}))〉Cgr〈((𝑘
∈ (1...(𝑁 − 1))
↦ if(𝑘 = 1,
({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑘 + 1), 1〉} ∪
(((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘𝑖),
({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0}))〉) ∧ ¬
(({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 1〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})), ({〈1, 0〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉 ∨ ({〈1,
0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) Btwn 〈({〈1,
0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})), ({〈1, 1〉,
〈2, 0〉} ∪ ((3...𝑁) × {0}))〉))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) |
| 173 | 4, 7, 9, 11, 130, 132, 172 | syl33anc 1341 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘3) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) |
| 174 | | ovex 6678 |
. . . 4
⊢
(1...(𝑁 − 1))
∈ V |
| 175 | 174 | mptex 6486 |
. . 3
⊢ (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
∈ V |
| 176 | | f1eq1 6096 |
. . . . . 6
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ↔ (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁))) |
| 177 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (𝑝‘1) =
((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})), ({〈(𝑘 +
1), 1〉} ∪ (((1...𝑁) ∖ {(𝑘 + 1)}) ×
{0}))))‘1)) |
| 178 | 177 | opeq1d 4408 |
. . . . . . . . 9
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ 〈(𝑝‘1),
𝑥〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉) |
| 179 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (𝑝‘𝑖) = ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖)) |
| 180 | 179 | opeq1d 4408 |
. . . . . . . . 9
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ 〈(𝑝‘𝑖), 𝑥〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉) |
| 181 | 178, 180 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (〈(𝑝‘1),
𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ↔ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉)) |
| 182 | 177 | opeq1d 4408 |
. . . . . . . . 9
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ 〈(𝑝‘1),
𝑦〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉) |
| 183 | 179 | opeq1d 4408 |
. . . . . . . . 9
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ 〈(𝑝‘𝑖), 𝑦〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉) |
| 184 | 182, 183 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (〈(𝑝‘1),
𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ↔ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉)) |
| 185 | 177 | opeq1d 4408 |
. . . . . . . . 9
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ 〈(𝑝‘1),
𝑧〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉) |
| 186 | 179 | opeq1d 4408 |
. . . . . . . . 9
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ 〈(𝑝‘𝑖), 𝑧〉 = 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) |
| 187 | 185, 186 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (〈(𝑝‘1),
𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉 ↔ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉)) |
| 188 | 181, 184,
187 | 3anbi123d 1399 |
. . . . . . 7
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ ((〈(𝑝‘1),
𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ↔ (〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉))) |
| 189 | 188 | ralbidv 2986 |
. . . . . 6
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (∀𝑖 ∈
(2...(𝑁 −
1))(〈(𝑝‘1),
𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ↔ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉))) |
| 190 | 176, 189 | 3anbi12d 1400 |
. . . . 5
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ ((𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) ↔ ((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)))) |
| 191 | 190 | rexbidv 3052 |
. . . 4
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (∃𝑧 ∈
(𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) ↔ ∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)))) |
| 192 | 191 | 2rexbidv 3057 |
. . 3
⊢ (𝑝 = (𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) × {0}))))
→ (∃𝑥 ∈
(𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)))) |
| 193 | 175, 192 | spcev 3300 |
. 2
⊢
(∃𝑥 ∈
(𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0})))):(1...(𝑁 −
1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑥〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑥〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑦〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑦〉 ∧ 〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘1), 𝑧〉Cgr〈((𝑘 ∈ (1...(𝑁 − 1)) ↦ if(𝑘 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})),
({〈(𝑘 + 1), 1〉}
∪ (((1...𝑁) ∖
{(𝑘 + 1)}) ×
{0}))))‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) → ∃𝑝∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) |
| 194 | 173, 193 | syl 17 |
1
⊢ (𝑁 ∈
(ℤ≥‘3) → ∃𝑝∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) |