| Step | Hyp | Ref
| Expression |
| 1 | | ballotth.m |
. . . 4
⊢ 𝑀 ∈ ℕ |
| 2 | | ballotth.n |
. . . 4
⊢ 𝑁 ∈ ℕ |
| 3 | | ballotth.o |
. . . 4
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} |
| 4 | | ballotth.p |
. . . 4
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂))) |
| 5 | | ballotth.f |
. . . 4
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐))))) |
| 6 | | ballotth.e |
. . . 4
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 7 | | ballotth.mgtn |
. . . 4
⊢ 𝑁 < 𝑀 |
| 8 | | ballotth.i |
. . . 4
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 9 | | ballotth.s |
. . . 4
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 10 | | ballotth.r |
. . . 4
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrc 30592 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemi 30562 |
. . 3
⊢ ((𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}, ℝ, < )) |
| 13 | 11, 12 | syl 17 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}, ℝ, < )) |
| 14 | | ltso 10118 |
. . . 4
⊢ < Or
ℝ |
| 15 | 14 | a1i 11 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → < Or ℝ) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 30563 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 17 | 16 | simpld 475 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 18 | | elfzelz 12342 |
. . . . 5
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) |
| 19 | 17, 18 | syl 17 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
| 20 | 19 | zred 11482 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℝ) |
| 21 | | eqid 2622 |
. . . . 5
⊢ (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣 ∩ 𝑢)) − (#‘(𝑣 ∖ 𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣 ∩ 𝑢)) − (#‘(𝑣 ∖ 𝑢)))) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
21 | ballotlemfrci 30589 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
| 23 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = (𝐼‘𝐶) → ((𝐹‘(𝑅‘𝐶))‘𝑘) = ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶))) |
| 24 | 23 | eqeq1d 2624 |
. . . . 5
⊢ (𝑘 = (𝐼‘𝐶) → (((𝐹‘(𝑅‘𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0)) |
| 25 | 24 | elrab 3363 |
. . . 4
⊢ ((𝐼‘𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} ↔ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0)) |
| 26 | 17, 22, 25 | sylanbrc 698 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 27 | | elrabi 3359 |
. . . . 5
⊢ (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} → 𝑦 ∈ (1...(𝑀 + 𝑁))) |
| 28 | 27 | anim2i 593 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) → (𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)))) |
| 29 | | simpr 477 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼‘𝐶)) → 𝑦 < (𝐼‘𝐶)) |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemfrcn0 30591 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼‘𝐶)) → ((𝐹‘(𝑅‘𝐶))‘𝑦) ≠ 0) |
| 31 | 30 | neneqd 2799 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0) |
| 32 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑦 → ((𝐹‘(𝑅‘𝐶))‘𝑘) = ((𝐹‘(𝑅‘𝐶))‘𝑦)) |
| 33 | 32 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑦 → (((𝐹‘(𝑅‘𝐶))‘𝑘) = 0 ↔ ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0)) |
| 34 | 33 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} ↔ (𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0)) |
| 35 | 34 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} → ((𝐹‘(𝑅‘𝐶))‘𝑦) = 0) |
| 36 | 31, 35 | nsyl 135 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 37 | 36 | 3expa 1265 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 38 | 29, 37 | syldan 487 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 < (𝐼‘𝐶)) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) |
| 39 | 38 | ex 450 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 < (𝐼‘𝐶) → ¬ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0})) |
| 40 | 39 | con2d 129 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) → (𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0} → ¬ 𝑦 < (𝐼‘𝐶))) |
| 41 | 40 | imp 445 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼‘𝐶)) |
| 42 | 28, 41 | sylancom 701 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}) → ¬ 𝑦 < (𝐼‘𝐶)) |
| 43 | 15, 20, 26, 42 | infmin 8400 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘(𝑅‘𝐶))‘𝑘) = 0}, ℝ, < ) = (𝐼‘𝐶)) |
| 44 | 13, 43 | eqtrd 2656 |
1
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘(𝑅‘𝐶)) = (𝐼‘𝐶)) |