Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemirc Structured version   Visualization version   Unicode version

Theorem ballotlemirc 30593
Description: Applying  R does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
Assertion
Ref Expression
ballotlemirc  |-  ( C  e.  ( O  \  E )  ->  (
I `  ( R `  C ) )  =  ( I `  C
) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    S, k, i, c    R, i, k    x, k, C    x, F    x, M    x, N
Allowed substitution hints:    C( c)    P( x, i, k, c)    R( x, c)    S( x)    E( x)    I( x)    O( x)

Proof of Theorem ballotlemirc
Dummy variables  y 
v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . 4  |-  M  e.  NN
2 ballotth.n . . . 4  |-  N  e.  NN
3 ballotth.o . . . 4  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . 4  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . 4  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotth.e . . . 4  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotth.mgtn . . . 4  |-  N  < 
M
8 ballotth.i . . . 4  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
9 ballotth.s . . . 4  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
10 ballotth.r . . . 4  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrc 30592 . . 3  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  ( O  \  E
) )
121, 2, 3, 4, 5, 6, 7, 8ballotlemi 30562 . . 3  |-  ( ( R `  C )  e.  ( O  \  E )  ->  (
I `  ( R `  C ) )  = inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 } ,  RR ,  <  ) )
1311, 12syl 17 . 2  |-  ( C  e.  ( O  \  E )  ->  (
I `  ( R `  C ) )  = inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 } ,  RR ,  <  ) )
14 ltso 10118 . . . 4  |-  <  Or  RR
1514a1i 11 . . 3  |-  ( C  e.  ( O  \  E )  ->  <  Or  RR )
161, 2, 3, 4, 5, 6, 7, 8ballotlemiex 30563 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1716simpld 475 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
18 elfzelz 12342 . . . . 5  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
1917, 18syl 17 . . . 4  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
2019zred 11482 . . 3  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  RR )
21 eqid 2622 . . . . 5  |-  ( u  e.  Fin ,  v  e.  Fin  |->  ( (
# `  ( v  i^i  u ) )  -  ( # `  ( v 
\  u ) ) ) )  =  ( u  e.  Fin , 
v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21ballotlemfrci 30589 . . . 4  |-  ( C  e.  ( O  \  E )  ->  (
( F `  ( R `  C )
) `  ( I `  C ) )  =  0 )
23 fveq2 6191 . . . . . 6  |-  ( k  =  ( I `  C )  ->  (
( F `  ( R `  C )
) `  k )  =  ( ( F `
 ( R `  C ) ) `  ( I `  C
) ) )
2423eqeq1d 2624 . . . . 5  |-  ( k  =  ( I `  C )  ->  (
( ( F `  ( R `  C ) ) `  k )  =  0  <->  ( ( F `  ( R `  C ) ) `  ( I `  C
) )  =  0 ) )
2524elrab 3363 . . . 4  |-  ( ( I `  C )  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 }  <->  ( (
I `  C )  e.  ( 1 ... ( M  +  N )
)  /\  ( ( F `  ( R `  C ) ) `  ( I `  C
) )  =  0 ) )
2617, 22, 25sylanbrc 698 . . 3  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 ( R `  C ) ) `  k )  =  0 } )
27 elrabi 3359 . . . . 5  |-  ( y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 }  ->  y  e.  ( 1 ... ( M  +  N )
) )
2827anim2i 593 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 } )  -> 
( C  e.  ( O  \  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) ) )
29 simpr 477 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) )  /\  y  < 
( I `  C
) )  ->  y  <  ( I `  C
) )
301, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemfrcn0 30591 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  ( 1 ... ( M  +  N ) )  /\  y  <  ( I `  C ) )  -> 
( ( F `  ( R `  C ) ) `  y )  =/=  0 )
3130neneqd 2799 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  ( 1 ... ( M  +  N ) )  /\  y  <  ( I `  C ) )  ->  -.  ( ( F `  ( R `  C ) ) `  y )  =  0 )
32 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  y  ->  (
( F `  ( R `  C )
) `  k )  =  ( ( F `
 ( R `  C ) ) `  y ) )
3332eqeq1d 2624 . . . . . . . . . . . 12  |-  ( k  =  y  ->  (
( ( F `  ( R `  C ) ) `  k )  =  0  <->  ( ( F `  ( R `  C ) ) `  y )  =  0 ) )
3433elrab 3363 . . . . . . . . . . 11  |-  ( y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 }  <->  ( y  e.  ( 1 ... ( M  +  N )
)  /\  ( ( F `  ( R `  C ) ) `  y )  =  0 ) )
3534simprbi 480 . . . . . . . . . 10  |-  ( y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 }  ->  (
( F `  ( R `  C )
) `  y )  =  0 )
3631, 35nsyl 135 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  ( 1 ... ( M  +  N ) )  /\  y  <  ( I `  C ) )  ->  -.  y  e.  { k  e.  ( 1 ... ( M  +  N
) )  |  ( ( F `  ( R `  C )
) `  k )  =  0 } )
37363expa 1265 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) )  /\  y  < 
( I `  C
) )  ->  -.  y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 } )
3829, 37syldan 487 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) )  /\  y  < 
( I `  C
) )  ->  -.  y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 } )
3938ex 450 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) )  ->  ( y  < 
( I `  C
)  ->  -.  y  e.  { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 ( R `  C ) ) `  k )  =  0 } ) )
4039con2d 129 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) )  ->  ( y  e. 
{ k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 ( R `  C ) ) `  k )  =  0 }  ->  -.  y  <  ( I `  C
) ) )
4140imp 445 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  y  e.  ( 1 ... ( M  +  N ) ) )  /\  y  e. 
{ k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `
 ( R `  C ) ) `  k )  =  0 } )  ->  -.  y  <  ( I `  C ) )
4228, 41sylancom 701 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  y  e.  { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  ( R `
 C ) ) `
 k )  =  0 } )  ->  -.  y  <  ( I `
 C ) )
4315, 20, 26, 42infmin 8400 . 2  |-  ( C  e.  ( O  \  E )  -> inf ( { k  e.  ( 1 ... ( M  +  N ) )  |  ( ( F `  ( R `  C ) ) `  k )  =  0 } ,  RR ,  <  )  =  ( I `  C
) )
4413, 43eqtrd 2656 1  |-  ( C  e.  ( O  \  E )  ->  (
I `  ( R `  C ) )  =  ( I `  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlemrinv0  30594
  Copyright terms: Public domain W3C validator