MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1n Structured version   Visualization version   GIF version

Theorem bcp1n 13103
Description: The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1n (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))

Proof of Theorem bcp1n
StepHypRef Expression
1 elfz3nn0 12434 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
2 facp1 13065 . . . . 5 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
31, 2syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
4 fznn0sub 12373 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
5 facp1 13065 . . . . . . . 8 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
64, 5syl 17 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
71nn0cnd 11353 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
8 1cnd 10056 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 1 ∈ ℂ)
9 elfznn0 12433 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109nn0cnd 11353 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
117, 8, 10addsubd 10413 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
1211fveq2d 6195 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = (!‘((𝑁𝐾) + 1)))
1311oveq2d 6666 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
146, 12, 133eqtr4d 2666 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)))
1514oveq1d 6665 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)))
164faccld 13071 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
1716nncnd 11036 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
18 nn0p1nn 11332 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
194, 18syl 17 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
2011, 19eqeltrd 2701 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
2120nncnd 11036 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
229faccld 13071 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
2322nncnd 11036 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
2417, 21, 23mul32d 10246 . . . . 5 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
2515, 24eqtrd 2656 . . . 4 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
263, 25oveq12d 6668 . . 3 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
271faccld 13071 . . . . 5 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℕ)
2827nncnd 11036 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ)
29 nn0p1nn 11332 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
301, 29syl 17 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℕ)
3130nncnd 11036 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
3216, 22nnmulcld 11068 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
33 nncn 11028 . . . . . 6 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
34 nnne0 11053 . . . . . 6 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0)
3533, 34jca 554 . . . . 5 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0))
3632, 35syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0))
3720nnne0d 11065 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
3821, 37jca 554 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) ∈ ℂ ∧ ((𝑁 + 1) − 𝐾) ≠ 0))
39 divmuldiv 10725 . . . 4 ((((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) ∧ ((((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0) ∧ (((𝑁 + 1) − 𝐾) ∈ ℂ ∧ ((𝑁 + 1) − 𝐾) ≠ 0))) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
4028, 31, 36, 38, 39syl22anc 1327 . . 3 (𝐾 ∈ (0...𝑁) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
4126, 40eqtr4d 2659 . 2 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
42 fzelp1 12393 . . 3 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
43 bcval2 13092 . . 3 (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
4442, 43syl 17 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
45 bcval2 13092 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
4645oveq1d 6665 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
4741, 44, 463eqtr4d 2666 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  ...cfz 12326  !cfa 13060  Ccbc 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090
This theorem is referenced by:  bcp1nk  13104  bcpasc  13108  bcp1ctr  25004  bcm1n  29554  bcm1nt  31623
  Copyright terms: Public domain W3C validator