| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnne0 | Structured version Visualization version GIF version | ||
| Description: A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) |
| Ref | Expression |
|---|---|
| nnne0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nnn 11052 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 2 | eleq1 2689 | . . 3 ⊢ (𝐴 = 0 → (𝐴 ∈ ℕ ↔ 0 ∈ ℕ)) | |
| 3 | 1, 2 | mtbiri 317 | . 2 ⊢ (𝐴 = 0 → ¬ 𝐴 ∈ ℕ) |
| 4 | 3 | necon2ai 2823 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |
| Copyright terms: Public domain | W3C validator |