MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq Structured version   Visualization version   GIF version

Theorem bernneq 12990
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))

Proof of Theorem bernneq
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . . 8 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
21oveq2d 6666 . . . . . . 7 (𝑗 = 0 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 0)))
3 oveq2 6658 . . . . . . 7 (𝑗 = 0 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑0))
42, 3breq12d 4666 . . . . . 6 (𝑗 = 0 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0)))
54imbi2d 330 . . . . 5 (𝑗 = 0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))))
6 oveq2 6658 . . . . . . . 8 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
76oveq2d 6666 . . . . . . 7 (𝑗 = 𝑘 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑘)))
8 oveq2 6658 . . . . . . 7 (𝑗 = 𝑘 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑘))
97, 8breq12d 4666 . . . . . 6 (𝑗 = 𝑘 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)))
109imbi2d 330 . . . . 5 (𝑗 = 𝑘 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))))
11 oveq2 6658 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1211oveq2d 6666 . . . . . . 7 (𝑗 = (𝑘 + 1) → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · (𝑘 + 1))))
13 oveq2 6658 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑(𝑘 + 1)))
1412, 13breq12d 4666 . . . . . 6 (𝑗 = (𝑘 + 1) → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))
1514imbi2d 330 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
16 oveq2 6658 . . . . . . . 8 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
1716oveq2d 6666 . . . . . . 7 (𝑗 = 𝑁 → (1 + (𝐴 · 𝑗)) = (1 + (𝐴 · 𝑁)))
18 oveq2 6658 . . . . . . 7 (𝑗 = 𝑁 → ((1 + 𝐴)↑𝑗) = ((1 + 𝐴)↑𝑁))
1917, 18breq12d 4666 . . . . . 6 (𝑗 = 𝑁 → ((1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗) ↔ (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
2019imbi2d 330 . . . . 5 (𝑗 = 𝑁 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑗)) ≤ ((1 + 𝐴)↑𝑗)) ↔ ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
21 recn 10026 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
22 mul01 10215 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2322oveq2d 6666 . . . . . . . . 9 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
24 1p0e1 11133 . . . . . . . . 9 (1 + 0) = 1
2523, 24syl6eq 2672 . . . . . . . 8 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
26 1le1 10655 . . . . . . . . 9 1 ≤ 1
27 ax-1cn 9994 . . . . . . . . . . 11 1 ∈ ℂ
28 addcl 10018 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
2927, 28mpan 706 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
30 exp0 12864 . . . . . . . . . 10 ((1 + 𝐴) ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3129, 30syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + 𝐴)↑0) = 1)
3226, 31syl5breqr 4691 . . . . . . . 8 (𝐴 ∈ ℂ → 1 ≤ ((1 + 𝐴)↑0))
3325, 32eqbrtrd 4675 . . . . . . 7 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3421, 33syl 17 . . . . . 6 (𝐴 ∈ ℝ → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
3534adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 0)) ≤ ((1 + 𝐴)↑0))
36 1re 10039 . . . . . . . . . . . . . 14 1 ∈ ℝ
37 nn0re 11301 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
38 remulcl 10021 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐴 · 𝑘) ∈ ℝ)
3937, 38sylan2 491 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℝ)
40 readdcl 10019 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ (𝐴 · 𝑘) ∈ ℝ) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
4136, 39, 40sylancr 695 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
42 simpl 473 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
43 readdcl 10019 . . . . . . . . . . . . 13 (((1 + (𝐴 · 𝑘)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4441, 42, 43syl2anc 693 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
4544adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ∈ ℝ)
46 readdcl 10019 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 + 𝐴) ∈ ℝ)
4736, 46mpan 706 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℝ)
4847adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + 𝐴) ∈ ℝ)
4941, 48remulcld 10070 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
5049adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ∈ ℝ)
51 reexpcl 12877 . . . . . . . . . . . . . 14 (((1 + 𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5247, 51sylan 488 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
5352, 48remulcld 10070 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
5453adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (((1 + 𝐴)↑𝑘) · (1 + 𝐴)) ∈ ℝ)
55 remulcl 10021 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
5655anidms 677 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
57 msqge0 10549 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
5856, 57jca 554 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)))
59 nn0ge0 11318 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
6037, 59jca 554 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
61 mulge0 10546 . . . . . . . . . . . . . . . 16 ((((𝐴 · 𝐴) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐴)) ∧ (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘)) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6258, 60, 61syl2an 494 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝐴) · 𝑘))
6321adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
64 nn0cn 11302 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6564adantl 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6663, 63, 65mul32d 10246 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐴) · 𝑘) = ((𝐴 · 𝑘) · 𝐴))
6762, 66breqtrd 4679 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 0 ≤ ((𝐴 · 𝑘) · 𝐴))
68 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝐴 ∈ ℝ)
6938, 68remulcld 10070 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7037, 69sylan2 491 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝑘) · 𝐴) ∈ ℝ)
7144, 70addge01d 10615 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (0 ≤ ((𝐴 · 𝑘) · 𝐴) ↔ ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴))))
7267, 71mpbid 222 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)))
73 mulcl 10020 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
74 addcl 10018 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
7527, 73, 74sylancr 695 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · 𝑘)) ∈ ℂ)
76 simpl 473 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → 𝐴 ∈ ℂ)
7773, 76mulcld 10060 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) · 𝐴) ∈ ℂ)
7875, 76, 77addassd 10062 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
79 muladd11 10206 . . . . . . . . . . . . . . . 16 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8073, 76, 79syl2anc 693 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) = ((1 + (𝐴 · 𝑘)) + (𝐴 + ((𝐴 · 𝑘) · 𝐴))))
8178, 80eqtr4d 2659 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8221, 64, 81syl2an 494 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((1 + (𝐴 · 𝑘)) + 𝐴) + ((𝐴 · 𝑘) · 𝐴)) = ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8372, 82breqtrd 4679 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8483adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)))
8541adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ∈ ℝ)
8652adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑𝑘) ∈ ℝ)
8748adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + 𝐴) ∈ ℝ)
88 neg1rr 11125 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
89 leadd2 10497 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
9088, 36, 89mp3an13 1415 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ (1 + -1) ≤ (1 + 𝐴)))
91 1pneg1e0 11129 . . . . . . . . . . . . . . . 16 (1 + -1) = 0
9291breq1i 4660 . . . . . . . . . . . . . . 15 ((1 + -1) ≤ (1 + 𝐴) ↔ 0 ≤ (1 + 𝐴))
9390, 92syl6bb 276 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-1 ≤ 𝐴 ↔ 0 ≤ (1 + 𝐴)))
9493biimpa 501 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → 0 ≤ (1 + 𝐴))
9594ad2ant2r 783 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → 0 ≤ (1 + 𝐴))
96 simprr 796 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))
9785, 86, 87, 95, 96lemul1ad 10963 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) · (1 + 𝐴)) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
9845, 50, 54, 84, 97letrd 10194 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + (𝐴 · 𝑘)) + 𝐴) ≤ (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
99 adddi 10025 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
10027, 99mp3an3 1413 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
101 mulid1 10037 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
102101adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
103102oveq2d 6666 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
104100, 103eqtrd 2656 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
105104oveq2d 6666 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = (1 + ((𝐴 · 𝑘) + 𝐴)))
106 addass 10023 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10727, 106mp3an1 1411 . . . . . . . . . . . . . 14 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
10873, 76, 107syl2anc 693 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((1 + (𝐴 · 𝑘)) + 𝐴) = (1 + ((𝐴 · 𝑘) + 𝐴)))
109105, 108eqtr4d 2659 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11021, 64, 109syl2an 494 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
111110adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) = ((1 + (𝐴 · 𝑘)) + 𝐴))
11227, 21, 28sylancr 695 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (1 + 𝐴) ∈ ℂ)
113 expp1 12867 . . . . . . . . . . . 12 (((1 + 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
114112, 113sylan 488 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
115114adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → ((1 + 𝐴)↑(𝑘 + 1)) = (((1 + 𝐴)↑𝑘) · (1 + 𝐴)))
11698, 111, 1153brtr4d 4685 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (-1 ≤ 𝐴 ∧ (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘))) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))
117116exp43 640 . . . . . . . 8 (𝐴 ∈ ℝ → (𝑘 ∈ ℕ0 → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
118117com12 32 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1))))))
119118impd 447 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → ((1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
120119a2d 29 . . . . 5 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑘)) ≤ ((1 + 𝐴)↑𝑘)) → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · (𝑘 + 1))) ≤ ((1 + 𝐴)↑(𝑘 + 1)))))
1215, 10, 15, 20, 35, 120nn0ind 11472 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℝ ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)))
122121expd 452 . . 3 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℝ → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
123122com12 32 . 2 (𝐴 ∈ ℝ → (𝑁 ∈ ℕ0 → (-1 ≤ 𝐴 → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))))
1241233imp 1256 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤ 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  -cneg 10267  0cn0 11292  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  bernneq2  12991  stoweidlem1  40218  stoweidlem10  40227  stoweidlem42  40259
  Copyright terms: Public domain W3C validator