MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blometi Structured version   Visualization version   GIF version

Theorem blometi 27658
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blometi.1 𝑋 = (BaseSet‘𝑈)
blometi.2 𝑌 = (BaseSet‘𝑊)
blometi.8 𝐶 = (IndMet‘𝑈)
blometi.d 𝐷 = (IndMet‘𝑊)
blometi.6 𝑁 = (𝑈 normOpOLD 𝑊)
blometi.7 𝐵 = (𝑈 BLnOp 𝑊)
blometi.u 𝑈 ∈ NrmCVec
blometi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blometi ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))

Proof of Theorem blometi
StepHypRef Expression
1 blometi.u . . . . 5 𝑈 ∈ NrmCVec
2 blometi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2622 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
42, 3nvmcl 27501 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
51, 4mp3an1 1411 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
6 eqid 2622 . . . . 5 (normCV𝑈) = (normCV𝑈)
7 eqid 2622 . . . . 5 (normCV𝑊) = (normCV𝑊)
8 blometi.6 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
9 blometi.7 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
10 blometi.w . . . . 5 𝑊 ∈ NrmCVec
112, 6, 7, 8, 9, 1, 10nmblolbi 27655 . . . 4 ((𝑇𝐵 ∧ (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
125, 11sylan2 491 . . 3 ((𝑇𝐵 ∧ (𝑃𝑋𝑄𝑋)) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
13123impb 1260 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
14 blometi.2 . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
152, 14, 9blof 27640 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋𝑌)
161, 10, 15mp3an12 1414 . . . . . 6 (𝑇𝐵𝑇:𝑋𝑌)
1716ffvelrnda 6359 . . . . 5 ((𝑇𝐵𝑃𝑋) → (𝑇𝑃) ∈ 𝑌)
18173adant3 1081 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑃) ∈ 𝑌)
1916ffvelrnda 6359 . . . . 5 ((𝑇𝐵𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
20193adant2 1080 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
21 eqid 2622 . . . . . 6 ( −𝑣𝑊) = ( −𝑣𝑊)
22 blometi.d . . . . . 6 𝐷 = (IndMet‘𝑊)
2314, 21, 7, 22imsdval 27541 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2410, 23mp3an1 1411 . . . 4 (((𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2518, 20, 24syl2anc 693 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
26 eqid 2622 . . . . . . 7 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
2726, 9bloln 27639 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
281, 10, 27mp3an12 1414 . . . . 5 (𝑇𝐵𝑇 ∈ (𝑈 LnOp 𝑊))
292, 3, 21, 26lnosub 27614 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
301, 29mp3anl1 1418 . . . . . . 7 (((𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3110, 30mpanl1 716 . . . . . 6 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
32313impb 1260 . . . . 5 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ 𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3328, 32syl3an1 1359 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3433fveq2d 6195 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
3525, 34eqtr4d 2659 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))))
36 blometi.8 . . . . . 6 𝐶 = (IndMet‘𝑈)
372, 3, 6, 36imsdval 27541 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
381, 37mp3an1 1411 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
39383adant1 1079 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
4039oveq2d 6666 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑁𝑇) · (𝑃𝐶𝑄)) = ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
4113, 35, 403brtr4d 4685 1 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650   · cmul 9941  cle 10075  NrmCVeccnv 27439  BaseSetcba 27441  𝑣 cnsb 27444  normCVcnmcv 27445  IndMetcims 27446   LnOp clno 27595   normOpOLD cnmoo 27596   BLnOp cblo 27597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-lno 27599  df-nmoo 27600  df-blo 27601  df-0o 27602
This theorem is referenced by:  blocni  27660
  Copyright terms: Public domain W3C validator