Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0snmhm Structured version   Visualization version   GIF version

Theorem c0snmhm 41915
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmhm
StepHypRef Expression
1 pm3.22 465 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
213adant3 1081 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
3 simp1 1061 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd)
4 mndmgm 17300 . . . . 5 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
543ad2ant2 1083 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm)
6 fveq2 6191 . . . . . 6 (𝐵 = {𝑍} → (#‘𝐵) = (#‘{𝑍}))
7 c0snmhm.z . . . . . . . 8 𝑍 = (0g𝑇)
8 fvex 6201 . . . . . . . 8 (0g𝑇) ∈ V
97, 8eqeltri 2697 . . . . . . 7 𝑍 ∈ V
10 hashsng 13159 . . . . . . 7 (𝑍 ∈ V → (#‘{𝑍}) = 1)
119, 10ax-mp 5 . . . . . 6 (#‘{𝑍}) = 1
126, 11syl6eq 2672 . . . . 5 (𝐵 = {𝑍} → (#‘𝐵) = 1)
13123ad2ant3 1084 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (#‘𝐵) = 1)
14 zrrhm.b . . . . 5 𝐵 = (Base‘𝑇)
15 zrrhm.0 . . . . 5 0 = (0g𝑆)
16 zrrhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1714, 15, 16c0snmgmhm 41914 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
183, 5, 13, 17syl3anc 1326 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
1916a1i 11 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥𝐵0 ))
20 eqidd 2623 . . . 4 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 )
219snid 4208 . . . . . 6 𝑍 ∈ {𝑍}
22 eleq2 2690 . . . . . 6 (𝐵 = {𝑍} → (𝑍𝐵𝑍 ∈ {𝑍}))
2321, 22mpbiri 248 . . . . 5 (𝐵 = {𝑍} → 𝑍𝐵)
24233ad2ant3 1084 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍𝐵)
25 eqid 2622 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2625, 15mndidcl 17308 . . . . 5 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
27263ad2ant1 1082 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆))
2819, 20, 24, 27fvmptd 6288 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻𝑍) = 0 )
2918, 28jca 554 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 ))
30 eqid 2622 . . 3 (+g𝑇) = (+g𝑇)
31 eqid 2622 . . 3 (+g𝑆) = (+g𝑆)
3214, 25, 30, 31, 7, 15ismhm0 41805 . 2 (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 )))
332, 29, 32sylanbrc 698 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cmpt 4729  cfv 5888  (class class class)co 6650  1c1 9937  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mgmcmgm 17240  Mndcmnd 17294   MndHom cmhm 17333   MgmHom cmgmhm 41777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-mgmhm 41779
This theorem is referenced by:  c0snghm  41916
  Copyright terms: Public domain W3C validator