| Step | Hyp | Ref
| Expression |
| 1 | | mndmgm 17300 |
. . . . 5
⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) |
| 2 | 1 | anim1i 592 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 3 | 2 | 3adant3 1081 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
| 4 | 3 | ancomd 467 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → (𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm)) |
| 5 | | zrrhm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑇) |
| 6 | | fvex 6201 |
. . . . . 6
⊢
(Base‘𝑇)
∈ V |
| 7 | 5, 6 | eqeltri 2697 |
. . . . 5
⊢ 𝐵 ∈ V |
| 8 | | hash1snb 13207 |
. . . . 5
⊢ (𝐵 ∈ V → ((#‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏})) |
| 9 | 7, 8 | ax-mp 5 |
. . . 4
⊢
((#‘𝐵) = 1
↔ ∃𝑏 𝐵 = {𝑏}) |
| 10 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 11 | | zrrhm.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑆) |
| 12 | 10, 11 | mndidcl 17308 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Mnd → 0 ∈
(Base‘𝑆)) |
| 13 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 0 ∈
(Base‘𝑆)) |
| 14 | 13 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 0 ∈ (Base‘𝑆)) |
| 15 | 14 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 ∈ 𝐵) → 0 ∈ (Base‘𝑆)) |
| 16 | | zrrhm.h |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
| 17 | 15, 16 | fmptd 6385 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻:𝐵⟶(Base‘𝑆)) |
| 18 | 16 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
| 19 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 = 𝑏) → 0 = 0 ) |
| 20 | | vsnid 4209 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ {𝑏} |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑏} → 𝑏 ∈ {𝑏}) |
| 22 | | eleq2 2690 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑏} → (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ {𝑏})) |
| 23 | 21, 22 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → 𝑏 ∈ 𝐵) |
| 24 | 23 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑏 ∈ 𝐵) |
| 25 | 18, 19, 24, 14 | fvmptd 6288 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘𝑏) = 0 ) |
| 26 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘𝑏) = 0 ) |
| 27 | 26, 26 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)) = ( 0 (+g‘𝑆) 0 )) |
| 28 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 29 | 10, 28, 11 | mndlid 17311 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Mnd ∧ 0 ∈
(Base‘𝑆)) → (
0
(+g‘𝑆)
0 ) =
0
) |
| 30 | 12, 29 | mpdan 702 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Mnd → ( 0
(+g‘𝑆)
0 ) =
0
) |
| 31 | 30 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ( 0
(+g‘𝑆)
0 ) =
0
) |
| 32 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ( 0 (+g‘𝑆) 0 ) = 0 ) |
| 33 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → ( 0
(+g‘𝑆)
0 ) =
0
) |
| 34 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 𝑇 ∈ Mgm) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑇 ∈ Mgm) |
| 36 | 35 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → 𝑇 ∈ Mgm) |
| 37 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
| 38 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 39 | 5, 38 | mgmcl 17245 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ Mgm ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) ∈ 𝐵) |
| 40 | 36, 37, 37, 39 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) ∈ 𝐵) |
| 41 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = {𝑏} → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 ↔ (𝑏(+g‘𝑇)𝑏) ∈ {𝑏})) |
| 42 | | elsni 4194 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏(+g‘𝑇)𝑏) ∈ {𝑏} → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
| 43 | 41, 42 | syl6bi 243 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = {𝑏} → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
| 44 | 43 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
| 46 | 40, 45 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
| 47 | 24, 46 | mpdan 702 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = (𝐻‘𝑏)) |
| 49 | 48 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = (𝐻‘𝑏)) |
| 50 | 49, 26 | eqtr2d 2657 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → 0 = (𝐻‘(𝑏(+g‘𝑇)𝑏))) |
| 51 | 27, 33, 50 | 3eqtrrd 2661 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
| 52 | 25, 51 | mpdan 702 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
| 53 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → 𝐵 = {𝑏}) |
| 54 | 53 | raleqdv 3144 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → (∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
| 55 | 53, 54 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑏} → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
| 56 | 55 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
| 57 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
| 58 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝑎(+g‘𝑇)𝑐) = (𝑏(+g‘𝑇)𝑐)) |
| 59 | 58 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝐻‘(𝑎(+g‘𝑇)𝑐)) = (𝐻‘(𝑏(+g‘𝑇)𝑐))) |
| 60 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝐻‘𝑎) = (𝐻‘𝑏)) |
| 61 | 60 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐))) |
| 62 | 59, 61 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → ((𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)))) |
| 63 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑏(+g‘𝑇)𝑐) = (𝑏(+g‘𝑇)𝑏)) |
| 64 | 63 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → (𝐻‘(𝑏(+g‘𝑇)𝑐)) = (𝐻‘(𝑏(+g‘𝑇)𝑏))) |
| 65 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝐻‘𝑐) = (𝐻‘𝑏)) |
| 66 | 65 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
| 67 | 64, 66 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → ((𝐻‘(𝑏(+g‘𝑇)𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
| 68 | 62, 67 | 2ralsng 4220 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ V ∧ 𝑏 ∈ V) → (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
| 69 | 57, 57, 68 | mp2an 708 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
{𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
| 70 | 56, 69 | syl6bb 276 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
| 71 | 52, 70 | mpbird 247 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))) |
| 72 | 17, 71 | jca 554 |
. . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
| 73 | 72 | ex 450 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
| 74 | 73 | exlimdv 1861 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) →
(∃𝑏 𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
| 75 | 9, 74 | syl5bi 232 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) →
((#‘𝐵) = 1 →
(𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
| 76 | 75 | 3impia 1261 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
| 77 | 5, 10, 38, 28 | ismgmhm 41783 |
. 2
⊢ (𝐻 ∈ (𝑇 MgmHom 𝑆) ↔ ((𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
| 78 | 4, 76, 77 | sylanbrc 698 |
1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) |