MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Structured version   Visualization version   GIF version

Theorem caucfil 23081
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1 𝑍 = (ℤ𝑀)
caucfil.2 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
Assertion
Ref Expression
caucfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))

Proof of Theorem caucfil
Dummy variables 𝑗 𝑘 𝑚 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1039 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
2 caucfil.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
32uztrn2 11705 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
43adantll 750 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5 simpll3 1102 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍𝑋)
6 fdm 6051 . . . . . . . . . . . . 13 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
75, 6syl 17 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
84, 7eleqtrrd 2704 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
95, 4ffvelrnd 6360 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
108, 9jca 554 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋))
1110biantrurd 529 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
12 uzss 11708 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
1312adantl 482 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑘) ⊆ (ℤ𝑗))
1413sseld 3602 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) → 𝑚 ∈ (ℤ𝑗)))
1514pm4.71rd 667 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ↔ (𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘))))
1615imbi1d 331 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
17 impexp 462 . . . . . . . . . . 11 (((𝑚 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
1816, 17syl6bb 276 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑗) → (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
1918ralbidv2 2984 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
2011, 19bitr3d 270 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋) ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
211, 20syl5bb 272 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
2221ralbidva 2985 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
23 r19.26-2 3065 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
24 eleq1 2689 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑘 ∈ (ℤ𝑚)))
25 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑢 = 𝑘 → (𝐹𝑢) = (𝐹𝑘))
2625oveq2d 6666 . . . . . . . . . . . . . 14 (𝑢 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑚)𝐷(𝐹𝑘)))
2726breq1d 4663 . . . . . . . . . . . . 13 (𝑢 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
2824, 27imbi12d 334 . . . . . . . . . . . 12 (𝑢 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
2928cbvralv 3171 . . . . . . . . . . 11 (∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
3029ralbii 2980 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
31 fveq2 6191 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (ℤ𝑚) = (ℤ𝑘))
3231eleq2d 2687 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝑢 ∈ (ℤ𝑚) ↔ 𝑢 ∈ (ℤ𝑘)))
33 fveq2 6191 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
3433oveq1d 6665 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → ((𝐹𝑚)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑢)))
3534breq1d 4663 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥))
3632, 35imbi12d 334 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥)))
37 eleq1 2689 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢 ∈ (ℤ𝑘) ↔ 𝑚 ∈ (ℤ𝑘)))
38 fveq2 6191 . . . . . . . . . . . . . 14 (𝑢 = 𝑚 → (𝐹𝑢) = (𝐹𝑚))
3938oveq2d 6666 . . . . . . . . . . . . 13 (𝑢 = 𝑚 → ((𝐹𝑘)𝐷(𝐹𝑢)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
4039breq1d 4663 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4137, 40imbi12d 334 . . . . . . . . . . 11 (𝑢 = 𝑚 → ((𝑢 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑢)) < 𝑥) ↔ (𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
4236, 41cbvral2v 3179 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑢 ∈ (ℤ𝑗)(𝑢 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑢)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
43 ralcom 3098 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4430, 42, 433bitr3i 290 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥))
4544anbi2i 730 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)))
46 anidm 676 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
4723, 45, 463bitr2i 288 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
48 simpll1 1100 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
49 simpll3 1102 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
502uztrn2 11705 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑚 ∈ (ℤ𝑗)) → 𝑚𝑍)
5150ad2ant2l 782 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → 𝑚𝑍)
5249, 51ffvelrnd 6360 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑚) ∈ 𝑋)
539adantrr 753 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
54 xmetsym 22152 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹𝑚) ∈ 𝑋 ∧ (𝐹𝑘) ∈ 𝑋) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5548, 52, 53, 54syl3anc 1326 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝐹𝑚)𝐷(𝐹𝑘)) = ((𝐹𝑘)𝐷(𝐹𝑚)))
5655breq1d 4663 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥 ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
5756imbi2d 330 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → ((𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥) ↔ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
5857anbi2d 740 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
59 jaob 822 . . . . . . . . . 10 (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
60 eluzelz 11697 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
61 eluzelz 11697 . . . . . . . . . . . . 13 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
62 uztric 11709 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6360, 61, 62syl2an 494 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
6463adantl 482 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)))
65 pm5.5 351 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6664, 65syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) ∨ 𝑘 ∈ (ℤ𝑚)) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6759, 66syl5bbr 274 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
6858, 67bitrd 268 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) ∧ (𝑘 ∈ (ℤ𝑗) ∧ 𝑚 ∈ (ℤ𝑗))) → (((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
69682ralbidva 2988 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ∧ (𝑘 ∈ (ℤ𝑚) → ((𝐹𝑚)𝐷(𝐹𝑘)) < 𝑥)) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7047, 69syl5bbr 274 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)(𝑚 ∈ (ℤ𝑘) → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7122, 70bitrd 268 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7271rexbidva 3049 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
73 uzf 11690 . . . . . 6 :ℤ⟶𝒫 ℤ
74 ffn 6045 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7573, 74ax-mp 5 . . . . 5 Fn ℤ
76 uzssz 11707 . . . . . 6 (ℤ𝑀) ⊆ ℤ
772, 76eqsstri 3635 . . . . 5 𝑍 ⊆ ℤ
78 raleq 3138 . . . . . . 7 (𝑢 = (ℤ𝑗) → (∀𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
7978raleqbi1dv 3146 . . . . . 6 (𝑢 = (ℤ𝑗) → (∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8079rexima 6497 . . . . 5 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8175, 77, 80mp2an 708 . . . 4 (∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑗)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)
8272, 81syl6bbr 278 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∃𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
8382ralbidv 2986 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
84 elfvdm 6220 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
8584adantr 481 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ dom ∞Met)
86 cnex 10017 . . . . . 6 ℂ ∈ V
8785, 86jctir 561 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
88 zsscn 11385 . . . . . . 7 ℤ ⊆ ℂ
8977, 88sstri 3612 . . . . . 6 𝑍 ⊆ ℂ
9089jctr 565 . . . . 5 (𝐹:𝑍𝑋 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
91 elpm2r 7875 . . . . 5 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
9287, 90, 91syl2an 494 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → 𝐹 ∈ (𝑋pm ℂ))
93 simpl 473 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝐷 ∈ (∞Met‘𝑋))
94 simpr 477 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
952, 93, 94iscau3 23076 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))))
9695baibd 948 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
9792, 96syldan 487 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ) ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
98973impa 1259 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥)))
99 caucfil.2 . . . 4 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ𝑍))
10099eleq1i 2692 . . 3 (𝐿 ∈ (CauFil‘𝐷) ↔ ((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷))
1012uzfbas 21702 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
102 fmcfil 23070 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
103101, 102syl3an2 1360 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (((𝑋 FilMap 𝐹)‘(ℤ𝑍)) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
104100, 103syl5bb 272 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐿 ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑢 ∈ (ℤ𝑍)∀𝑘𝑢𝑚𝑢 ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑥))
10583, 98, 1043bitr4d 300 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  𝒫 cpw 4158   class class class wbr 4653  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934   < clt 10074  cz 11377  cuz 11687  +crp 11832  ∞Metcxmt 19731  fBascfbas 19734   FilMap cfm 21737  CauFilccfil 23050  Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-z 11378  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-rest 16083  df-psmet 19738  df-xmet 19739  df-bl 19741  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742  df-cfil 23053  df-cau 23054
This theorem is referenced by:  cmetcaulem  23086
  Copyright terms: Public domain W3C validator