MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg2 Structured version   Visualization version   GIF version

Theorem caurcvg2 14408
Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caurcvg2.2 (𝜑𝐹𝑉)
caurcvg2.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvg2 (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caurcvg2
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11836 . . . 4 1 ∈ ℝ+
21ne0ii 3923 . . 3 + ≠ ∅
3 caurcvg2.3 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4 r19.2z 4060 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
52, 3, 4sylancr 695 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
6 simpl 473 . . . . . 6 (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℝ)
76ralimi 2952 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
8 eqid 2622 . . . . . . . . 9 (ℤ𝑗) = (ℤ𝑗)
9 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
10 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1110eleq1d 2686 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
1211rspccva 3308 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
139, 12sylan 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
14 eqid 2622 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))
1513, 14fmptd 6385 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)):(ℤ𝑗)⟶ℝ)
16 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (ℤ𝑗) = (ℤ𝑚))
17 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
1817oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → ((𝐹𝑘) − (𝐹𝑗)) = ((𝐹𝑘) − (𝐹𝑚)))
1918fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑚))))
2019breq1d 4663 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
2120anbi2d 740 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2216, 21raleqbidv 3152 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2322cbvrexv 3172 . . . . . . . . . . . . . . 15 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
24 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2524eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑖) ∈ ℝ))
2624oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) − (𝐹𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
2726fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (abs‘((𝐹𝑘) − (𝐹𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
2827breq1d 4663 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
2925, 28anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
3029cbvralv 3171 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
31 recn 10026 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ ℝ → (𝐹𝑖) ∈ ℂ)
3231anim1i 592 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3332ralimi 2952 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3430, 33sylbi 207 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3534reximi 3011 . . . . . . . . . . . . . . 15 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3623, 35sylbi 207 . . . . . . . . . . . . . 14 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3736ralimi 2952 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
383, 37syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3938adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
40 caucvg.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
4140, 8cau4 14096 . . . . . . . . . . . 12 (𝑗𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4241ad2antrl 764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4339, 42mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
44 simpr 477 . . . . . . . . . . . . . 14 (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)
458uztrn2 11705 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖 ∈ (ℤ𝑗))
46 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
47 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑖) ∈ V
4846, 14, 47fvmpt 6282 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
4945, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
50 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
51 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑚) ∈ V
5250, 14, 51fvmpt 6282 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5352adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5449, 53oveq12d 6668 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
5554fveq2d 6195 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
5655breq1d 4663 . . . . . . . . . . . . . 14 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
5744, 56syl5ibr 236 . . . . . . . . . . . . 13 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5857ralimdva 2962 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑗) → (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5958reximia 3009 . . . . . . . . . . 11 (∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6059ralimi 2952 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6143, 60syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
628, 15, 61caurcvg 14407 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
63 eluzelz 11697 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
6463, 40eleq2s 2719 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
6564ad2antrl 764 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝑗 ∈ ℤ)
66 caurcvg2.2 . . . . . . . . . 10 (𝜑𝐹𝑉)
6766adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹𝑉)
68 fveq2 6191 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
6968cbvmptv 4750 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑘 ∈ (ℤ𝑗) ↦ (𝐹𝑘))
708, 69climmpt 14302 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7165, 67, 70syl2anc 693 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7262, 71mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
73 climrel 14223 . . . . . . . 8 Rel ⇝
7473releldmi 5362 . . . . . . 7 (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
7572, 74syl 17 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ∈ dom ⇝ )
7675expr 643 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ → 𝐹 ∈ dom ⇝ ))
777, 76syl5 34 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7877rexlimdva 3031 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7978rexlimdvw 3034 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
805, 79mpd 15 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  c0 3915   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   < clt 10074  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  lim supclsp 14201  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220
This theorem is referenced by:  iseralt  14415  cvgcmp  14548
  Copyright terms: Public domain W3C validator