Proof of Theorem ccat2s1fvw
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ Word 𝑉) |
| 2 | | simprl 794 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
| 3 | | simpr 477 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) |
| 4 | 3 | adantl 482 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
| 5 | | ccatw2s1ass 13407 |
. . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++
〈“𝑌”〉))) |
| 6 | 1, 2, 4, 5 | syl3anc 1326 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ (〈“𝑋”〉 ++
〈“𝑌”〉))) |
| 7 | 6 | fveq1d 6193 |
. 2
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼)) |
| 8 | | ccat2s1cl 13397 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) |
| 9 | 8 | adantl 482 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉) |
| 10 | | simp2 1062 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) → 𝐼 ∈
ℕ0) |
| 11 | | lencl 13324 |
. . . . . . . 8
⊢ (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈
ℕ0) |
| 12 | 11 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) → (#‘𝑊) ∈
ℕ0) |
| 13 | | nn0ge0 11318 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℕ0
→ 0 ≤ 𝐼) |
| 14 | 13 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ≤
𝐼) |
| 15 | | 0red 10041 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 0 ∈
ℝ) |
| 16 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈
ℕ0) |
| 17 | 16 | nn0red 11352 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈
ℝ) |
| 18 | 11 | nn0red 11352 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℝ) |
| 19 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) →
(#‘𝑊) ∈
ℝ) |
| 20 | | lelttr 10128 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 𝐼
∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((0 ≤ 𝐼 ∧ 𝐼 < (#‘𝑊)) → 0 < (#‘𝑊))) |
| 21 | 15, 17, 19, 20 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → ((0 ≤
𝐼 ∧ 𝐼 < (#‘𝑊)) → 0 < (#‘𝑊))) |
| 22 | 14, 21 | mpand 711 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0) → (𝐼 < (#‘𝑊) → 0 < (#‘𝑊))) |
| 23 | 22 | 3impia 1261 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) → 0 < (#‘𝑊)) |
| 24 | | elnnnn0b 11337 |
. . . . . . 7
⊢
((#‘𝑊) ∈
ℕ ↔ ((#‘𝑊)
∈ ℕ0 ∧ 0 < (#‘𝑊))) |
| 25 | 12, 23, 24 | sylanbrc 698 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) → (#‘𝑊) ∈ ℕ) |
| 26 | | simp3 1063 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) → 𝐼 < (#‘𝑊)) |
| 27 | 10, 25, 26 | 3jca 1242 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) → (𝐼 ∈ ℕ0 ∧
(#‘𝑊) ∈ ℕ
∧ 𝐼 < (#‘𝑊))) |
| 28 | 27 | adantr 481 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐼 ∈ ℕ0 ∧
(#‘𝑊) ∈ ℕ
∧ 𝐼 < (#‘𝑊))) |
| 29 | | elfzo0 12508 |
. . . 4
⊢ (𝐼 ∈ (0..^(#‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧
(#‘𝑊) ∈ ℕ
∧ 𝐼 < (#‘𝑊))) |
| 30 | 28, 29 | sylibr 224 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐼 ∈ (0..^(#‘𝑊))) |
| 31 | | ccatval1 13361 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(#‘𝑊))) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) |
| 32 | 1, 9, 30, 31 | syl3anc 1326 |
. 2
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑊 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))‘𝐼) = (𝑊‘𝐼)) |
| 33 | 7, 32 | eqtrd 2656 |
1
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) |