Proof of Theorem coe1mul2lem2
| Step | Hyp | Ref
| Expression |
| 1 | | df1o2 7572 |
. . . . 5
⊢
1𝑜 = {∅} |
| 2 | | nn0ex 11298 |
. . . . 5
⊢
ℕ0 ∈ V |
| 3 | | 0ex 4790 |
. . . . 5
⊢ ∅
∈ V |
| 4 | | eqid 2622 |
. . . . 5
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) = (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) |
| 5 | 1, 2, 3, 4 | mapsnf1o2 7905 |
. . . 4
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 |
| 6 | | f1of1 6136 |
. . . 4
⊢ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1→ℕ0) |
| 7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1→ℕ0 |
| 8 | | coe1mul2lem2.h |
. . . . 5
⊢ 𝐻 = {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ 𝑑 ∘𝑟 ≤
(1𝑜 × {𝑘})} |
| 9 | | ssrab2 3687 |
. . . . 5
⊢ {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ 𝑑 ∘𝑟 ≤
(1𝑜 × {𝑘})} ⊆ (ℕ0
↑𝑚 1𝑜) |
| 10 | 8, 9 | eqsstri 3635 |
. . . 4
⊢ 𝐻 ⊆ (ℕ0
↑𝑚 1𝑜) |
| 11 | 10 | a1i 11 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ 𝐻 ⊆
(ℕ0 ↑𝑚
1𝑜)) |
| 12 | | f1ores 6151 |
. . 3
⊢ (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1→ℕ0 ∧ 𝐻 ⊆ (ℕ0
↑𝑚 1𝑜)) → ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻)) |
| 13 | 7, 11, 12 | sylancr 695 |
. 2
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻)) |
| 14 | | coe1mul2lem1 19637 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑑 ∈
(ℕ0 ↑𝑚 1𝑜)) →
(𝑑
∘𝑟 ≤ (1𝑜 × {𝑘}) ↔ (𝑑‘∅) ∈ (0...𝑘))) |
| 15 | 14 | rabbidva 3188 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ {𝑑 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
𝑑
∘𝑟 ≤ (1𝑜 × {𝑘})} = {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑑‘∅) ∈ (0...𝑘)}) |
| 16 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘∅) = (𝑑‘∅)) |
| 17 | 16 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘∅) ∈ (0...𝑘) ↔ (𝑑‘∅) ∈ (0...𝑘))) |
| 18 | 17 | cbvrabv 3199 |
. . . . . . . 8
⊢ {𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑐‘∅) ∈ (0...𝑘)} = {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑑‘∅) ∈ (0...𝑘)} |
| 19 | 15, 18 | syl6eqr 2674 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ {𝑑 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
𝑑
∘𝑟 ≤ (1𝑜 × {𝑘})} = {𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑐‘∅) ∈ (0...𝑘)}) |
| 20 | 4 | mptpreima 5628 |
. . . . . . 7
⊢ (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘)) = {𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑐‘∅) ∈ (0...𝑘)} |
| 21 | 19, 8, 20 | 3eqtr4g 2681 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ 𝐻 = (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘))) |
| 22 | 21 | imaeq2d 5466 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) “
𝐻) = ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘)))) |
| 23 | | f1ofo 6144 |
. . . . . . 7
⊢ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0) |
| 24 | 5, 23 | ax-mp 5 |
. . . . . 6
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0 |
| 25 | | fz0ssnn0 12435 |
. . . . . 6
⊢
(0...𝑘) ⊆
ℕ0 |
| 26 | | foimacnv 6154 |
. . . . . 6
⊢ (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0 ∧ (0...𝑘) ⊆ ℕ0)
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) “
(◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘)) |
| 27 | 24, 25, 26 | mp2an 708 |
. . . . 5
⊢ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘) |
| 28 | 22, 27 | syl6eq 2672 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) “
𝐻) = (0...𝑘)) |
| 29 | 28 | f1oeq3d 6134 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻) ↔ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘))) |
| 30 | | resmpt 5449 |
. . . 4
⊢ (𝐻 ⊆ (ℕ0
↑𝑚 1𝑜) → ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐 ∈ 𝐻 ↦ (𝑐‘∅))) |
| 31 | | f1oeq1 6127 |
. . . 4
⊢ (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)) → (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
| 32 | 11, 30, 31 | 3syl 18 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→(0...𝑘) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
| 33 | 29, 32 | bitrd 268 |
. 2
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
| 34 | 13, 33 | mpbid 222 |
1
⊢ (𝑘 ∈ ℕ0
→ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘)) |