MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem2 Structured version   Visualization version   Unicode version

Theorem coe1mul2lem2 19638
Description: An equivalence for coe1mul2 19639. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypothesis
Ref Expression
coe1mul2lem2.h  |-  H  =  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }
Assertion
Ref Expression
coe1mul2lem2  |-  ( k  e.  NN0  ->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) )
Distinct variable groups:    H, c    c, d, k
Allowed substitution hints:    H( k, d)

Proof of Theorem coe1mul2lem2
StepHypRef Expression
1 df1o2 7572 . . . . 5  |-  1o  =  { (/) }
2 nn0ex 11298 . . . . 5  |-  NN0  e.  _V
3 0ex 4790 . . . . 5  |-  (/)  e.  _V
4 eqid 2622 . . . . 5  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) )  =  ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
51, 2, 3, 4mapsnf1o2 7905 . . . 4  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o )
-1-1-onto-> NN0
6 f1of1 6136 . . . 4  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o )
-1-1-> NN0 )
75, 6ax-mp 5 . . 3  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o ) -1-1-> NN0
8 coe1mul2lem2.h . . . . 5  |-  H  =  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o  X.  { k } ) }
9 ssrab2 3687 . . . . 5  |-  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  C_  ( NN0  ^m  1o )
108, 9eqsstri 3635 . . . 4  |-  H  C_  ( NN0  ^m  1o )
1110a1i 11 . . 3  |-  ( k  e.  NN0  ->  H  C_  ( NN0  ^m  1o ) )
12 f1ores 6151 . . 3  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-> NN0  /\  H  C_  ( NN0  ^m  1o ) )  ->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H ) )
137, 11, 12sylancr 695 . 2  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H ) )
14 coe1mul2lem1 19637 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  d  e.  ( NN0  ^m  1o ) )  -> 
( d  oR  <_  ( 1o  X.  { k } )  <-> 
( d `  (/) )  e.  ( 0 ... k
) ) )
1514rabbidva 3188 . . . . . . . 8  |-  ( k  e.  NN0  ->  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  =  {
d  e.  ( NN0 
^m  1o )  |  ( d `  (/) )  e.  ( 0 ... k
) } )
16 fveq1 6190 . . . . . . . . . 10  |-  ( c  =  d  ->  (
c `  (/) )  =  ( d `  (/) ) )
1716eleq1d 2686 . . . . . . . . 9  |-  ( c  =  d  ->  (
( c `  (/) )  e.  ( 0 ... k
)  <->  ( d `  (/) )  e.  ( 0 ... k ) ) )
1817cbvrabv 3199 . . . . . . . 8  |-  { c  e.  ( NN0  ^m  1o )  |  (
c `  (/) )  e.  ( 0 ... k
) }  =  {
d  e.  ( NN0 
^m  1o )  |  ( d `  (/) )  e.  ( 0 ... k
) }
1915, 18syl6eqr 2674 . . . . . . 7  |-  ( k  e.  NN0  ->  { d  e.  ( NN0  ^m  1o )  |  d  oR  <_  ( 1o 
X.  { k } ) }  =  {
c  e.  ( NN0 
^m  1o )  |  ( c `  (/) )  e.  ( 0 ... k
) } )
204mptpreima 5628 . . . . . . 7  |-  ( `' ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" ( 0 ... k ) )  =  { c  e.  ( NN0  ^m  1o )  |  ( c `  (/) )  e.  ( 0 ... k ) }
2119, 8, 203eqtr4g 2681 . . . . . 6  |-  ( k  e.  NN0  ->  H  =  ( `' ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) "
( 0 ... k
) ) )
2221imaeq2d 5466 . . . . 5  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" H )  =  ( ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) " ( `' ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) " (
0 ... k ) ) ) )
23 f1ofo 6144 . . . . . . 7  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( c  e.  ( NN0  ^m  1o )  |->  ( c `  (/) ) ) : ( NN0  ^m  1o )
-onto->
NN0 )
245, 23ax-mp 5 . . . . . 6  |-  ( c  e.  ( NN0  ^m  1o )  |->  ( c `
 (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0
25 fz0ssnn0 12435 . . . . . 6  |-  ( 0 ... k )  C_  NN0
26 foimacnv 6154 . . . . . 6  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0  /\  ( 0 ... k )  C_  NN0 )  ->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( `' ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( 0 ... k ) ) )  =  ( 0 ... k ) )
2724, 25, 26mp2an 708 . . . . 5  |-  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( `' ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" ( 0 ... k ) ) )  =  ( 0 ... k )
2822, 27syl6eq 2672 . . . 4  |-  ( k  e.  NN0  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )
" H )  =  ( 0 ... k
) )
2928f1oeq3d 6134 . . 3  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( (
c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k ) ) )
30 resmpt 5449 . . . 4  |-  ( H 
C_  ( NN0  ^m  1o )  ->  ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H )  =  ( c  e.  H  |->  ( c `  (/) ) ) )
31 f1oeq1 6127 . . . 4  |-  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H )  =  ( c  e.  H  |->  ( c `  (/) ) )  ->  ( ( ( c  e.  ( NN0 
^m  1o )  |->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3211, 30, 313syl 18 . . 3  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
0 ... k )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3329, 32bitrd 268 . 2  |-  ( k  e.  NN0  ->  ( ( ( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )  |`  H ) : H -1-1-onto-> (
( c  e.  ( NN0  ^m  1o ) 
|->  ( c `  (/) ) )
" H )  <->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) ) )
3413, 33mpbid 222 1  |-  ( k  e.  NN0  ->  ( c  e.  H  |->  ( c `
 (/) ) ) : H -1-1-onto-> ( 0 ... k
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oRcofr 6896   1oc1o 7553    ^m cmap 7857   0cc0 9936    <_ cle 10075   NN0cn0 11292   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  coe1mul2  19639
  Copyright terms: Public domain W3C validator