MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidx0 Structured version   Visualization version   GIF version

Theorem cshwidx0 13552
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidx0 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))

Proof of Theorem cshwidx0
StepHypRef Expression
1 hasheq0 13154 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = 0 ↔ 𝑊 = ∅))
2 elfzo0 12508 . . . . . . . 8 (𝑁 ∈ (0..^(#‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑁 < (#‘𝑊)))
3 elnnne0 11306 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0))
4 eqneqall 2805 . . . . . . . . . . . 12 ((#‘𝑊) = 0 → ((#‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
54com12 32 . . . . . . . . . . 11 ((#‘𝑊) ≠ 0 → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
65adantl 482 . . . . . . . . . 10 (((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0) → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
73, 6sylbi 207 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
873ad2ant2 1083 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑁 < (#‘𝑊)) → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
92, 8sylbi 207 . . . . . . 7 (𝑁 ∈ (0..^(#‘𝑊)) → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
109com13 88 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = 0 → (𝑁 ∈ (0..^(#‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
111, 10sylbird 250 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(#‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
1211com23 86 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(#‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
1312imp 445 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁)))
1413com12 32 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁)))
15 simpl 473 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → 𝑊 ∈ Word 𝑉)
1615adantl 482 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → 𝑊 ∈ Word 𝑉)
17 simpl 473 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → 𝑊 ≠ ∅)
18 elfzoelz 12470 . . . . . 6 (𝑁 ∈ (0..^(#‘𝑊)) → 𝑁 ∈ ℤ)
1918ad2antll 765 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → 𝑁 ∈ ℤ)
20 cshwidx0mod 13551 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (#‘𝑊))))
2116, 17, 19, 20syl3anc 1326 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (#‘𝑊))))
22 zmodidfzoimp 12700 . . . . . 6 (𝑁 ∈ (0..^(#‘𝑊)) → (𝑁 mod (#‘𝑊)) = 𝑁)
2322ad2antll 765 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → (𝑁 mod (#‘𝑊)) = 𝑁)
2423fveq2d 6195 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → (𝑊‘(𝑁 mod (#‘𝑊))) = (𝑊𝑁))
2521, 24eqtrd 2656 . . 3 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
2625ex 450 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁)))
2714, 26pm2.61ine 2877 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936   < clt 10074  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  clwwisshclwws  26928
  Copyright terms: Public domain W3C validator