![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpexpp1 | Structured version Visualization version GIF version |
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dpexpp1.a | ⊢ 𝐴 ∈ ℕ0 |
dpexpp1.b | ⊢ 𝐵 ∈ ℝ+ |
dpexpp1.1 | ⊢ (𝑃 + 1) = 𝑄 |
dpexpp1.p | ⊢ 𝑃 ∈ ℤ |
dpexpp1.q | ⊢ 𝑄 ∈ ℤ |
Ref | Expression |
---|---|
dpexpp1 | ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10040 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | 10pos 11515 | . . . . . 6 ⊢ 0 < ;10 | |
3 | 1, 2 | gtneii 10149 | . . . . 5 ⊢ ;10 ≠ 0 |
4 | dpexpp1.a | . . . . . . . . . 10 ⊢ 𝐴 ∈ ℕ0 | |
5 | dpexpp1.b | . . . . . . . . . 10 ⊢ 𝐵 ∈ ℝ+ | |
6 | 4, 5 | rpdp2cl 29589 | . . . . . . . . 9 ⊢ _𝐴𝐵 ∈ ℝ+ |
7 | rpre 11839 | . . . . . . . . 9 ⊢ (_𝐴𝐵 ∈ ℝ+ → _𝐴𝐵 ∈ ℝ) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ _𝐴𝐵 ∈ ℝ |
9 | 8 | recni 10052 | . . . . . . 7 ⊢ _𝐴𝐵 ∈ ℂ |
10 | 10re 11517 | . . . . . . . . . . 11 ⊢ ;10 ∈ ℝ | |
11 | 10, 2 | pm3.2i 471 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
12 | elrp 11834 | . . . . . . . . . 10 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
13 | 11, 12 | mpbir 221 | . . . . . . . . 9 ⊢ ;10 ∈ ℝ+ |
14 | dpexpp1.p | . . . . . . . . 9 ⊢ 𝑃 ∈ ℤ | |
15 | rpexpcl 12879 | . . . . . . . . 9 ⊢ ((;10 ∈ ℝ+ ∧ 𝑃 ∈ ℤ) → (;10↑𝑃) ∈ ℝ+) | |
16 | 13, 14, 15 | mp2an 708 | . . . . . . . 8 ⊢ (;10↑𝑃) ∈ ℝ+ |
17 | rpcn 11841 | . . . . . . . 8 ⊢ ((;10↑𝑃) ∈ ℝ+ → (;10↑𝑃) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (;10↑𝑃) ∈ ℂ |
19 | 9, 18 | mulcli 10045 | . . . . . 6 ⊢ (_𝐴𝐵 · (;10↑𝑃)) ∈ ℂ |
20 | 10nn0 11516 | . . . . . . 7 ⊢ ;10 ∈ ℕ0 | |
21 | 20 | nn0cni 11304 | . . . . . 6 ⊢ ;10 ∈ ℂ |
22 | 19, 21 | divcan1zi 10761 | . . . . 5 ⊢ (;10 ≠ 0 → (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃))) |
23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (_𝐴𝐵 · (;10↑𝑃)) |
24 | 21, 3 | pm3.2i 471 | . . . . . 6 ⊢ (;10 ∈ ℂ ∧ ;10 ≠ 0) |
25 | div23 10704 | . . . . . 6 ⊢ ((_𝐴𝐵 ∈ ℂ ∧ (;10↑𝑃) ∈ ℂ ∧ (;10 ∈ ℂ ∧ ;10 ≠ 0)) → ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃))) | |
26 | 9, 18, 24, 25 | mp3an 1424 | . . . . 5 ⊢ ((_𝐴𝐵 · (;10↑𝑃)) / ;10) = ((_𝐴𝐵 / ;10) · (;10↑𝑃)) |
27 | 26 | oveq1i 6660 | . . . 4 ⊢ (((_𝐴𝐵 · (;10↑𝑃)) / ;10) · ;10) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
28 | 23, 27 | eqtr3i 2646 | . . 3 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) |
29 | 9, 21, 3 | divcli 10767 | . . . 4 ⊢ (_𝐴𝐵 / ;10) ∈ ℂ |
30 | 29, 18, 21 | mulassi 10049 | . . 3 ⊢ (((_𝐴𝐵 / ;10) · (;10↑𝑃)) · ;10) = ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) |
31 | expp1z 12909 | . . . . . 6 ⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 𝑃 ∈ ℤ) → (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10)) | |
32 | 21, 3, 14, 31 | mp3an 1424 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = ((;10↑𝑃) · ;10) |
33 | dpexpp1.1 | . . . . . 6 ⊢ (𝑃 + 1) = 𝑄 | |
34 | 33 | oveq2i 6661 | . . . . 5 ⊢ (;10↑(𝑃 + 1)) = (;10↑𝑄) |
35 | 32, 34 | eqtr3i 2646 | . . . 4 ⊢ ((;10↑𝑃) · ;10) = (;10↑𝑄) |
36 | 35 | oveq2i 6661 | . . 3 ⊢ ((_𝐴𝐵 / ;10) · ((;10↑𝑃) · ;10)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
37 | 28, 30, 36 | 3eqtri 2648 | . 2 ⊢ (_𝐴𝐵 · (;10↑𝑃)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
38 | 4, 5 | dpval3rp 29608 | . . 3 ⊢ (𝐴.𝐵) = _𝐴𝐵 |
39 | 38 | oveq1i 6660 | . 2 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = (_𝐴𝐵 · (;10↑𝑃)) |
40 | 0nn0 11307 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
41 | 40, 6 | dpval3rp 29608 | . . . 4 ⊢ (0._𝐴𝐵) = _0_𝐴𝐵 |
42 | 6 | dp20h 29586 | . . . 4 ⊢ _0_𝐴𝐵 = (_𝐴𝐵 / ;10) |
43 | 41, 42 | eqtri 2644 | . . 3 ⊢ (0._𝐴𝐵) = (_𝐴𝐵 / ;10) |
44 | 43 | oveq1i 6660 | . 2 ⊢ ((0._𝐴𝐵) · (;10↑𝑄)) = ((_𝐴𝐵 / ;10) · (;10↑𝑄)) |
45 | 37, 39, 44 | 3eqtr4i 2654 | 1 ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 < clt 10074 / cdiv 10684 ℕ0cn0 11292 ℤcz 11377 ;cdc 11493 ℝ+crp 11832 ↑cexp 12860 _cdp2 29577 .cdp 29595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-dp2 29578 df-dp 29596 |
This theorem is referenced by: 0dp2dp 29617 hgt750lemd 30726 hgt750lem 30729 |
Copyright terms: Public domain | W3C validator |