![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0cni | Structured version Visualization version GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.) |
Ref | Expression |
---|---|
nn0rei.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0cni | ⊢ 𝐴 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0rei.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0rei 11303 | . 2 ⊢ 𝐴 ∈ ℝ |
3 | 2 | recni 10052 | 1 ⊢ 𝐴 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 ℂcc 9934 ℕ0cn0 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-n0 11293 |
This theorem is referenced by: nn0le2xi 11347 num0u 11508 num0h 11509 numsuc 11511 numsucc 11549 numma 11557 nummac 11558 numma2c 11559 numadd 11560 numaddc 11561 nummul1c 11562 nummul2c 11563 decrmanc 11576 decrmac 11577 decaddi 11579 decaddci 11580 decsubi 11583 decsubiOLD 11584 decmul1 11585 decmul1OLD 11586 decmulnc 11591 11multnc 11592 decmul10add 11593 decmul10addOLD 11594 6p5lem 11595 4t3lem 11631 6t5e30OLD 11645 7t3e21 11649 7t6e42 11652 8t3e24 11655 8t4e32 11656 8t8e64 11662 9t3e27 11664 9t4e36 11665 9t5e45 11666 9t6e54 11667 9t7e63 11668 9t11e99 11671 decbin0 11682 decbin2 11683 sq10 13048 3dec 13050 3decOLD 13053 nn0le2msqi 13054 nn0opthlem1 13055 nn0opthi 13057 nn0opth2i 13058 faclbnd4lem1 13080 cats1fvn 13603 bpoly4 14790 fsumcube 14791 3dvdsdec 15054 3dvdsdecOLD 15055 3dvds2dec 15056 3dvds2decOLD 15057 divalglem2 15118 3lcm2e6 15440 phiprmpw 15481 dec5dvds 15768 dec5dvds2 15769 dec2nprm 15771 modxai 15772 mod2xi 15773 mod2xnegi 15775 modsubi 15776 gcdi 15777 decexp2 15779 numexp0 15780 numexp1 15781 numexpp1 15782 numexp2x 15783 decsplit0b 15784 decsplit0 15785 decsplit1 15786 decsplit 15787 decsplit0bOLD 15788 decsplit0OLD 15789 decsplit1OLD 15790 decsplitOLD 15791 karatsuba 15792 karatsubaOLD 15793 2exp8 15796 prmlem2 15827 83prm 15830 139prm 15831 163prm 15832 631prm 15834 1259lem1 15838 1259lem2 15839 1259lem3 15840 1259lem4 15841 1259lem5 15842 1259prm 15843 2503lem1 15844 2503lem2 15845 2503lem3 15846 2503prm 15847 4001lem1 15848 4001lem2 15849 4001lem3 15850 4001lem4 15851 4001prm 15852 log2ublem1 24673 log2ublem2 24674 log2ublem3 24675 log2ub 24676 birthday 24681 ppidif 24889 bpos1lem 25007 dfdec100 29576 dp20u 29585 dp20h 29586 dpmul10 29603 dpmul100 29605 dp3mul10 29606 dpmul1000 29607 dpexpp1 29616 0dp2dp 29617 dpadd2 29618 dpadd 29619 dpmul 29621 dpmul4 29622 lmatfvlem 29881 ballotlemfp1 30553 ballotth 30599 reprlt 30697 hgt750lemd 30726 hgt750lem2 30730 subfacp1lem1 31161 poimirlem26 33435 poimirlem28 33437 inductionexd 38453 unitadd 38498 fmtno5lem4 41468 257prm 41473 fmtno4prmfac 41484 fmtno5fac 41494 139prmALT 41511 127prm 41515 m11nprm 41518 |
Copyright terms: Public domain | W3C validator |