Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpexpp1 Structured version   Visualization version   Unicode version

Theorem dpexpp1 29616
Description: Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dpexpp1.a  |-  A  e. 
NN0
dpexpp1.b  |-  B  e.  RR+
dpexpp1.1  |-  ( P  +  1 )  =  Q
dpexpp1.p  |-  P  e.  ZZ
dpexpp1.q  |-  Q  e.  ZZ
Assertion
Ref Expression
dpexpp1  |-  ( ( A period B )  x.  (; 1 0 ^ P
) )  =  ( ( 0 period_ A B )  x.  (; 1 0 ^ Q
) )

Proof of Theorem dpexpp1
StepHypRef Expression
1 0re 10040 . . . . . 6  |-  0  e.  RR
2 10pos 11515 . . . . . 6  |-  0  < ; 1
0
31, 2gtneii 10149 . . . . 5  |- ; 1 0  =/=  0
4 dpexpp1.a . . . . . . . . . 10  |-  A  e. 
NN0
5 dpexpp1.b . . . . . . . . . 10  |-  B  e.  RR+
64, 5rpdp2cl 29589 . . . . . . . . 9  |- _ A B  e.  RR+
7 rpre 11839 . . . . . . . . 9  |-  (_ A B  e.  RR+  -> _ A B  e.  RR )
86, 7ax-mp 5 . . . . . . . 8  |- _ A B  e.  RR
98recni 10052 . . . . . . 7  |- _ A B  e.  CC
10 10re 11517 . . . . . . . . . . 11  |- ; 1 0  e.  RR
1110, 2pm3.2i 471 . . . . . . . . . 10  |-  (; 1 0  e.  RR  /\  0  < ; 1 0 )
12 elrp 11834 . . . . . . . . . 10  |-  (; 1 0  e.  RR+  <->  (; 1 0  e.  RR  /\  0  < ; 1
0 ) )
1311, 12mpbir 221 . . . . . . . . 9  |- ; 1 0  e.  RR+
14 dpexpp1.p . . . . . . . . 9  |-  P  e.  ZZ
15 rpexpcl 12879 . . . . . . . . 9  |-  ( (; 1
0  e.  RR+  /\  P  e.  ZZ )  ->  (; 1 0 ^ P )  e.  RR+ )
1613, 14, 15mp2an 708 . . . . . . . 8  |-  (; 1 0 ^ P
)  e.  RR+
17 rpcn 11841 . . . . . . . 8  |-  ( (; 1
0 ^ P )  e.  RR+  ->  (; 1 0 ^ P
)  e.  CC )
1816, 17ax-mp 5 . . . . . . 7  |-  (; 1 0 ^ P
)  e.  CC
199, 18mulcli 10045 . . . . . 6  |-  (_ A B  x.  (; 1 0 ^ P ) )  e.  CC
20 10nn0 11516 . . . . . . 7  |- ; 1 0  e.  NN0
2120nn0cni 11304 . . . . . 6  |- ; 1 0  e.  CC
2219, 21divcan1zi 10761 . . . . 5  |-  (; 1 0  =/=  0  ->  ( ( (_ A B  x.  (; 1 0 ^ P ) )  / ; 1 0 )  x. ; 1
0 )  =  (_ A B  x.  (; 1 0 ^ P
) ) )
233, 22ax-mp 5 . . . 4  |-  ( ( (_ A B  x.  (; 1 0 ^ P ) )  / ; 1 0 )  x. ; 1
0 )  =  (_ A B  x.  (; 1 0 ^ P
) )
2421, 3pm3.2i 471 . . . . . 6  |-  (; 1 0  e.  CC  /\ ; 1
0  =/=  0 )
25 div23 10704 . . . . . 6  |-  ( (_ A B  e.  CC  /\  (; 1 0 ^ P )  e.  CC  /\  (; 1 0  e.  CC  /\ ; 1
0  =/=  0 ) )  ->  ( (_ A B  x.  (; 1 0 ^ P
) )  / ; 1 0 )  =  ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ P
) ) )
269, 18, 24, 25mp3an 1424 . . . . 5  |-  ( (_ A B  x.  (; 1 0 ^ P
) )  / ; 1 0 )  =  ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ P
) )
2726oveq1i 6660 . . . 4  |-  ( ( (_ A B  x.  (; 1 0 ^ P ) )  / ; 1 0 )  x. ; 1
0 )  =  ( ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ P
) )  x. ; 1 0 )
2823, 27eqtr3i 2646 . . 3  |-  (_ A B  x.  (; 1 0 ^ P ) )  =  ( ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ P
) )  x. ; 1 0 )
299, 21, 3divcli 10767 . . . 4  |-  (_ A B  / ; 1 0 )  e.  CC
3029, 18, 21mulassi 10049 . . 3  |-  ( ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ P
) )  x. ; 1 0 )  =  ( (_ A B  / ; 1 0 )  x.  ( (; 1 0 ^ P
)  x. ; 1 0 ) )
31 expp1z 12909 . . . . . 6  |-  ( (; 1
0  e.  CC  /\ ; 1 0  =/=  0  /\  P  e.  ZZ )  ->  (; 1 0 ^ ( P  + 
1 ) )  =  ( (; 1 0 ^ P
)  x. ; 1 0 ) )
3221, 3, 14, 31mp3an 1424 . . . . 5  |-  (; 1 0 ^ ( P  +  1 ) )  =  ( (; 1
0 ^ P )  x. ; 1 0 )
33 dpexpp1.1 . . . . . 6  |-  ( P  +  1 )  =  Q
3433oveq2i 6661 . . . . 5  |-  (; 1 0 ^ ( P  +  1 ) )  =  (; 1 0 ^ Q
)
3532, 34eqtr3i 2646 . . . 4  |-  ( (; 1
0 ^ P )  x. ; 1 0 )  =  (; 1 0 ^ Q
)
3635oveq2i 6661 . . 3  |-  ( (_ A B  / ; 1 0 )  x.  ( (; 1 0 ^ P
)  x. ; 1 0 ) )  =  ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ Q
) )
3728, 30, 363eqtri 2648 . 2  |-  (_ A B  x.  (; 1 0 ^ P ) )  =  ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ Q
) )
384, 5dpval3rp 29608 . . 3  |-  ( A
period B )  = _ A B
3938oveq1i 6660 . 2  |-  ( ( A period B )  x.  (; 1 0 ^ P
) )  =  (_ A B  x.  (; 1 0 ^ P
) )
40 0nn0 11307 . . . . 5  |-  0  e.  NN0
4140, 6dpval3rp 29608 . . . 4  |-  ( 0
period_ A B )  = _ 0_ A B
426dp20h 29586 . . . 4  |- _ 0_ A B  =  (_ A B  / ; 1 0 )
4341, 42eqtri 2644 . . 3  |-  ( 0
period_ A B )  =  (_ A B  / ; 1 0 )
4443oveq1i 6660 . 2  |-  ( ( 0 period_ A B )  x.  (; 1 0 ^ Q ) )  =  ( (_ A B  / ; 1 0 )  x.  (; 1 0 ^ Q
) )
4537, 39, 443eqtr4i 2654 1  |-  ( ( A period B )  x.  (; 1 0 ^ P
) )  =  ( ( 0 period_ A B )  x.  (; 1 0 ^ Q
) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    / cdiv 10684   NN0cn0 11292   ZZcz 11377  ;cdc 11493   RR+crp 11832   ^cexp 12860  _cdp2 29577   periodcdp 29595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-dp2 29578  df-dp 29596
This theorem is referenced by:  0dp2dp  29617  hgt750lemd  30726  hgt750lem  30729
  Copyright terms: Public domain W3C validator