| Step | Hyp | Ref
| Expression |
| 1 | | ax-mulf 10016 |
. . . . . . 7
⊢ ·
:(ℂ × ℂ)⟶ℂ |
| 2 | | ffn 6045 |
. . . . . . 7
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ ·
Fn (ℂ × ℂ) |
| 4 | | dvdsmulf1o.x |
. . . . . . . . 9
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
| 5 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ ℕ |
| 6 | 4, 5 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝑋 ⊆
ℕ |
| 7 | | nnsscn 11025 |
. . . . . . . 8
⊢ ℕ
⊆ ℂ |
| 8 | 6, 7 | sstri 3612 |
. . . . . . 7
⊢ 𝑋 ⊆
ℂ |
| 9 | | dvdsmulf1o.y |
. . . . . . . . 9
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| 10 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
| 11 | 9, 10 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝑌 ⊆
ℕ |
| 12 | 11, 7 | sstri 3612 |
. . . . . . 7
⊢ 𝑌 ⊆
ℂ |
| 13 | | xpss12 5225 |
. . . . . . 7
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
| 14 | 8, 12, 13 | mp2an 708 |
. . . . . 6
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
| 15 | | fnssres 6004 |
. . . . . 6
⊢ ((
· Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
( · ↾ (𝑋
× 𝑌)) Fn (𝑋 × 𝑌)) |
| 16 | 3, 14, 15 | mp2an 708 |
. . . . 5
⊢ (
· ↾ (𝑋 ×
𝑌)) Fn (𝑋 × 𝑌) |
| 17 | 16 | a1i 11 |
. . . 4
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
| 18 | | ovres 6800 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖( · ↾ (𝑋 × 𝑌))𝑗) = (𝑖 · 𝑗)) |
| 19 | 18 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖( · ↾ (𝑋 × 𝑌))𝑗) = (𝑖 · 𝑗)) |
| 20 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀)) |
| 21 | 20, 4 | elrab2 3366 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 ↔ (𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀)) |
| 22 | 21 | simplbi 476 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ) |
| 23 | 22 | ad2antrl 764 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℕ) |
| 24 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁)) |
| 25 | 24, 9 | elrab2 3366 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁)) |
| 26 | 25 | simplbi 476 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ) |
| 27 | 26 | ad2antll 765 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℕ) |
| 28 | 23, 27 | nnmulcld 11068 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℕ) |
| 29 | 25 | simprbi 480 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁) |
| 30 | 29 | ad2antll 765 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∥ 𝑁) |
| 31 | 21 | simprbi 480 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀) |
| 32 | 31 | ad2antrl 764 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∥ 𝑀) |
| 33 | 27 | nnzd 11481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℤ) |
| 34 | | dvdsmulf1o.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℕ) |
| 36 | 35 | nnzd 11481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℤ) |
| 37 | 23 | nnzd 11481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℤ) |
| 38 | | dvdscmul 15008 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
| 39 | 33, 36, 37, 38 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
| 40 | | dvdsmulf1o.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 41 | 40 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℕ) |
| 42 | 41 | nnzd 11481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℤ) |
| 43 | | dvdsmulc 15009 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
| 44 | 37, 42, 36, 43 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
| 45 | 28 | nnzd 11481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℤ) |
| 46 | 37, 36 | zmulcld 11488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑁) ∈ ℤ) |
| 47 | 42, 36 | zmulcld 11488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑀 · 𝑁) ∈ ℤ) |
| 48 | | dvdstr 15018 |
. . . . . . . . . 10
⊢ (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑖 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 49 | 45, 46, 47, 48 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 50 | 39, 44, 49 | syl2and 500 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ((𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 51 | 30, 32, 50 | mp2and 715 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)) |
| 52 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = (𝑖 · 𝑗) → (𝑥 ∥ (𝑀 · 𝑁) ↔ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 53 | | dvdsmulf1o.z |
. . . . . . . 8
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
| 54 | 52, 53 | elrab2 3366 |
. . . . . . 7
⊢ ((𝑖 · 𝑗) ∈ 𝑍 ↔ ((𝑖 · 𝑗) ∈ ℕ ∧ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
| 55 | 28, 51, 54 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ 𝑍) |
| 56 | 19, 55 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖( · ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
| 57 | 56 | ralrimivva 2971 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖( · ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
| 58 | | ffnov 6764 |
. . . 4
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)⟶𝑍 ↔ (( · ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖( · ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍)) |
| 59 | 17, 57, 58 | sylanbrc 698 |
. . 3
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍) |
| 60 | 23 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ) |
| 61 | 60 | nnnn0d 11351 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ0) |
| 62 | | simprll 802 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ 𝑋) |
| 63 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑚 → (𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀)) |
| 64 | 63, 4 | elrab2 3366 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝑋 ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀)) |
| 65 | 64 | simplbi 476 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∈ ℕ) |
| 66 | 62, 65 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ) |
| 67 | 66 | nnnn0d 11351 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ0) |
| 68 | 60 | nnzd 11481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℤ) |
| 69 | 27 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℕ) |
| 70 | 69 | nnzd 11481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℤ) |
| 71 | | dvdsmul1 15003 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∥ (𝑖 · 𝑗)) |
| 72 | 68, 70, 71 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑖 · 𝑗)) |
| 73 | | simprr 796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑚 · 𝑛)) |
| 74 | 8, 62 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℂ) |
| 75 | | simprlr 803 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ 𝑌) |
| 76 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑛 → (𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁)) |
| 77 | 76, 9 | elrab2 3366 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑌 ↔ (𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁)) |
| 78 | 77 | simplbi 476 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∈ ℕ) |
| 79 | 75, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℕ) |
| 80 | 79 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℂ) |
| 81 | 74, 80 | mulcomd 10061 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑛 · 𝑚)) |
| 82 | 73, 81 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑛 · 𝑚)) |
| 83 | 72, 82 | breqtrd 4679 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑛 · 𝑚)) |
| 84 | 79 | nnzd 11481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℤ) |
| 85 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑁 ∈ ℤ) |
| 86 | | gcdcom 15235 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 gcd 𝑁) = (𝑁 gcd 𝑖)) |
| 87 | 68, 85, 86 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = (𝑁 gcd 𝑖)) |
| 88 | 42 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑀 ∈ ℤ) |
| 89 | 34 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 90 | 40 | nnzd 11481 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 91 | | gcdcom 15235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 92 | 89, 90, 91 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 93 | | dvdsmulf1o.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 94 | 92, 93 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
| 95 | 94 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑀) = 1) |
| 96 | 32 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑀) |
| 97 | | rpdvds 15374 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑖 ∥ 𝑀)) → (𝑁 gcd 𝑖) = 1) |
| 98 | 85, 68, 88, 95, 96, 97 | syl32anc 1334 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑖) = 1) |
| 99 | 87, 98 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = 1) |
| 100 | 77 | simprbi 480 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁) |
| 101 | 75, 100 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∥ 𝑁) |
| 102 | | rpdvds 15374 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑖 gcd 𝑁) = 1 ∧ 𝑛 ∥ 𝑁)) → (𝑖 gcd 𝑛) = 1) |
| 103 | 68, 84, 85, 99, 101, 102 | syl32anc 1334 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑛) = 1) |
| 104 | 66 | nnzd 11481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℤ) |
| 105 | | coprmdvds 15366 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
| 106 | 68, 84, 104, 105 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
| 107 | 83, 103, 106 | mp2and 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑚) |
| 108 | | dvdsmul1 15003 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∥ (𝑚 · 𝑛)) |
| 109 | 104, 84, 108 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑚 · 𝑛)) |
| 110 | 60 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℂ) |
| 111 | 69 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℂ) |
| 112 | 110, 111 | mulcomd 10061 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑗 · 𝑖)) |
| 113 | 73, 112 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑗 · 𝑖)) |
| 114 | 109, 113 | breqtrd 4679 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑗 · 𝑖)) |
| 115 | | gcdcom 15235 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 gcd 𝑁) = (𝑁 gcd 𝑚)) |
| 116 | 104, 85, 115 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = (𝑁 gcd 𝑚)) |
| 117 | 64 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀) |
| 118 | 62, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑀) |
| 119 | | rpdvds 15374 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑚 ∥ 𝑀)) → (𝑁 gcd 𝑚) = 1) |
| 120 | 85, 104, 88, 95, 118, 119 | syl32anc 1334 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑚) = 1) |
| 121 | 116, 120 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = 1) |
| 122 | 30 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∥ 𝑁) |
| 123 | | rpdvds 15374 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑚 gcd 𝑁) = 1 ∧ 𝑗 ∥ 𝑁)) → (𝑚 gcd 𝑗) = 1) |
| 124 | 104, 70, 85, 121, 122, 123 | syl32anc 1334 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑗) = 1) |
| 125 | | coprmdvds 15366 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
| 126 | 104, 70, 68, 125 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
| 127 | 114, 124,
126 | mp2and 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑖) |
| 128 | | dvdseq 15036 |
. . . . . . . . 9
⊢ (((𝑖 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) ∧ (𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖)) → 𝑖 = 𝑚) |
| 129 | 61, 67, 107, 127, 128 | syl22anc 1327 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 = 𝑚) |
| 130 | 60 | nnne0d 11065 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ≠ 0) |
| 131 | 129 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑛) = (𝑚 · 𝑛)) |
| 132 | 73, 131 | eqtr4d 2659 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑖 · 𝑛)) |
| 133 | 111, 80, 110, 130, 132 | mulcanad 10662 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 = 𝑛) |
| 134 | 129, 133 | opeq12d 4410 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉) |
| 135 | 134 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 136 | 135 | ralrimivva 2971 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 137 | 136 | ralrimivva 2971 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 138 | | fvres 6207 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑢) = ( · ‘𝑢)) |
| 139 | | fvres 6207 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑣) = ( · ‘𝑣)) |
| 140 | 138, 139 | eqeqan12d 2638 |
. . . . . . . 8
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → ((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) ↔ ( · ‘𝑢) = ( · ‘𝑣))) |
| 141 | 140 | imbi1d 331 |
. . . . . . 7
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → (((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ (( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣))) |
| 142 | 141 | ralbidva 2985 |
. . . . . 6
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣))) |
| 143 | 142 | ralbiia 2979 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣)) |
| 144 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ( · ‘𝑣) = ( ·
‘〈𝑚, 𝑛〉)) |
| 145 | | df-ov 6653 |
. . . . . . . . . . 11
⊢ (𝑚 · 𝑛) = ( · ‘〈𝑚, 𝑛〉) |
| 146 | 144, 145 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ( · ‘𝑣) = (𝑚 · 𝑛)) |
| 147 | 146 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (( · ‘𝑢) = ( · ‘𝑣) ↔ ( · ‘𝑢) = (𝑚 · 𝑛))) |
| 148 | | eqeq2 2633 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (𝑢 = 𝑣 ↔ 𝑢 = 〈𝑚, 𝑛〉)) |
| 149 | 147, 148 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ (( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉))) |
| 150 | 149 | ralxp 5263 |
. . . . . . 7
⊢
(∀𝑣 ∈
(𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉)) |
| 151 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ( · ‘𝑢) = ( ·
‘〈𝑖, 𝑗〉)) |
| 152 | | df-ov 6653 |
. . . . . . . . . . 11
⊢ (𝑖 · 𝑗) = ( · ‘〈𝑖, 𝑗〉) |
| 153 | 151, 152 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ( · ‘𝑢) = (𝑖 · 𝑗)) |
| 154 | 153 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (( · ‘𝑢) = (𝑚 · 𝑛) ↔ (𝑖 · 𝑗) = (𝑚 · 𝑛))) |
| 155 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (𝑢 = 〈𝑚, 𝑛〉 ↔ 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 156 | 154, 155 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
| 157 | 156 | 2ralbidv 2989 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (( · ‘𝑢) = (𝑚 · 𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
| 158 | 150, 157 | syl5bb 272 |
. . . . . 6
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
| 159 | 158 | ralxp 5263 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(( · ‘𝑢) = ( · ‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 160 | 143, 159 | bitri 264 |
. . . 4
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
| 161 | 137, 160 | sylibr 224 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣)) |
| 162 | | dff13 6512 |
. . 3
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ↔ (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣))) |
| 163 | 59, 161, 162 | sylanbrc 698 |
. 2
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍) |
| 164 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑥 ∥ (𝑀 · 𝑁) ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
| 165 | 164, 53 | elrab2 3366 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ ℕ ∧ 𝑤 ∥ (𝑀 · 𝑁))) |
| 166 | 165 | simplbi 476 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ) |
| 167 | 166 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℕ) |
| 168 | 167 | nnzd 11481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℤ) |
| 169 | 40 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℕ) |
| 170 | 169 | nnzd 11481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℤ) |
| 171 | 169 | nnne0d 11065 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ≠ 0) |
| 172 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0) |
| 173 | 172 | necon3ai 2819 |
. . . . . . . . 9
⊢ (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
| 174 | 171, 173 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
| 175 | | gcdn0cl 15224 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ) |
| 176 | 168, 170,
174, 175 | syl21anc 1325 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ ℕ) |
| 177 | | gcddvds 15225 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 178 | 168, 170,
177 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 179 | 178 | simprd 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∥ 𝑀) |
| 180 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑀) → (𝑥 ∥ 𝑀 ↔ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 181 | 180, 4 | elrab2 3366 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑀) ∈ 𝑋 ↔ ((𝑤 gcd 𝑀) ∈ ℕ ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
| 182 | 176, 179,
181 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ 𝑋) |
| 183 | 34 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℕ) |
| 184 | 183 | nnzd 11481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℤ) |
| 185 | 183 | nnne0d 11065 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ≠ 0) |
| 186 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
| 187 | 186 | necon3ai 2819 |
. . . . . . . . 9
⊢ (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
| 188 | 185, 187 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
| 189 | | gcdn0cl 15224 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ) |
| 190 | 168, 184,
188, 189 | syl21anc 1325 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ ℕ) |
| 191 | | gcddvds 15225 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 192 | 168, 184,
191 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 193 | 192 | simprd 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∥ 𝑁) |
| 194 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑁) → (𝑥 ∥ 𝑁 ↔ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 195 | 194, 9 | elrab2 3366 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑁) ∈ 𝑌 ↔ ((𝑤 gcd 𝑁) ∈ ℕ ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
| 196 | 190, 193,
195 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ 𝑌) |
| 197 | | opelxpi 5148 |
. . . . . 6
⊢ (((𝑤 gcd 𝑀) ∈ 𝑋 ∧ (𝑤 gcd 𝑁) ∈ 𝑌) → 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌)) |
| 198 | 182, 196,
197 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌)) |
| 199 | | fvres 6207 |
. . . . . . 7
⊢
(〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 200 | 198, 199 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 201 | 93 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑀 gcd 𝑁) = 1) |
| 202 | | rpmulgcd2 15370 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 203 | 168, 170,
184, 201, 202 | syl31anc 1329 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
| 204 | | df-ov 6653 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) |
| 205 | 203, 204 | syl6eq 2672 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 206 | 165 | simprbi 480 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∥ (𝑀 · 𝑁)) |
| 207 | 206 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∥ (𝑀 · 𝑁)) |
| 208 | 40, 34 | nnmulcld 11068 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
| 209 | | gcdeq 15272 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ ∧ (𝑀 · 𝑁) ∈ ℕ) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
| 210 | 166, 208,
209 | syl2anr 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
| 211 | 207, 210 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = 𝑤) |
| 212 | 200, 205,
211 | 3eqtr2rd 2663 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 213 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑢 = 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 → (( · ↾ (𝑋 × 𝑌))‘𝑢) = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
| 214 | 213 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑢 = 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 → (𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢) ↔ 𝑤 = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉))) |
| 215 | 214 | rspcev 3309 |
. . . . 5
⊢
((〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌) ∧ 𝑤 = (( · ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢)) |
| 216 | 198, 212,
215 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢)) |
| 217 | 216 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢)) |
| 218 | | dffo3 6374 |
. . 3
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–onto→𝑍 ↔ (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (( · ↾ (𝑋 × 𝑌))‘𝑢))) |
| 219 | 59, 217, 218 | sylanbrc 698 |
. 2
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
| 220 | | df-f1o 5895 |
. 2
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 ↔ (( · ↾
(𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ∧ ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍)) |
| 221 | 163, 219,
220 | sylanbrc 698 |
1
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |