| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 12772 |
. . . 4
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 2 | | dvdsmulf1o.x |
. . . . 5
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
| 3 | | dvdsmulf1o.1 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | | dvdsssfz1 15040 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ (1...𝑀)) |
| 5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ (1...𝑀)) |
| 6 | 2, 5 | syl5eqss 3649 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ (1...𝑀)) |
| 7 | | ssfi 8180 |
. . . 4
⊢
(((1...𝑀) ∈ Fin
∧ 𝑋 ⊆ (1...𝑀)) → 𝑋 ∈ Fin) |
| 8 | 1, 6, 7 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 9 | | fzfid 12772 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 10 | | dvdsmulf1o.y |
. . . . . 6
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| 11 | | dvdsmulf1o.2 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 12 | | dvdsssfz1 15040 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) |
| 13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) |
| 14 | 10, 13 | syl5eqss 3649 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ (1...𝑁)) |
| 15 | | ssfi 8180 |
. . . . 5
⊢
(((1...𝑁) ∈ Fin
∧ 𝑌 ⊆ (1...𝑁)) → 𝑌 ∈ Fin) |
| 16 | 9, 14, 15 | syl2anc 693 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 17 | | fsumdvdsmul.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) |
| 18 | 16, 17 | fsumcl 14464 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝑌 𝐵 ∈ ℂ) |
| 19 | | fsumdvdsmul.4 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 20 | 8, 18, 19 | fsummulc1 14517 |
. 2
⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑗 ∈ 𝑋 (𝐴 · Σ𝑘 ∈ 𝑌 𝐵)) |
| 21 | 16 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑌 ∈ Fin) |
| 22 | 17 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) |
| 23 | 21, 19, 22 | fsummulc2 14516 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑘 ∈ 𝑌 (𝐴 · 𝐵)) |
| 24 | | fsumdvdsmul.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) = 𝐷) |
| 25 | 24 | anassrs 680 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → (𝐴 · 𝐵) = 𝐷) |
| 26 | 25 | sumeq2dv 14433 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → Σ𝑘 ∈ 𝑌 (𝐴 · 𝐵) = Σ𝑘 ∈ 𝑌 𝐷) |
| 27 | 23, 26 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑘 ∈ 𝑌 𝐷) |
| 28 | 27 | sumeq2dv 14433 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷) |
| 29 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ( · ‘𝑧) = ( ·
‘〈𝑗, 𝑘〉)) |
| 30 | | df-ov 6653 |
. . . . . . 7
⊢ (𝑗 · 𝑘) = ( · ‘〈𝑗, 𝑘〉) |
| 31 | 29, 30 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ( · ‘𝑧) = (𝑗 · 𝑘)) |
| 32 | 31 | csbeq1d 3540 |
. . . . 5
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
| 33 | | ovex 6678 |
. . . . . 6
⊢ (𝑗 · 𝑘) ∈ V |
| 34 | | fsumdvdsmul.7 |
. . . . . 6
⊢ (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷) |
| 35 | 33, 34 | csbie 3559 |
. . . . 5
⊢
⦋(𝑗
· 𝑘) / 𝑖⦌𝐶 = 𝐷 |
| 36 | 32, 35 | syl6eq 2672 |
. . . 4
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = 𝐷) |
| 37 | 19 | adantrr 753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐴 ∈ ℂ) |
| 38 | 17 | adantrl 752 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐵 ∈ ℂ) |
| 39 | 37, 38 | mulcld 10060 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) ∈ ℂ) |
| 40 | 24, 39 | eqeltrrd 2702 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐷 ∈ ℂ) |
| 41 | 36, 8, 16, 40 | fsumxp 14503 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 42 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑤𝐶 |
| 43 | | nfcsb1v 3549 |
. . . . 5
⊢
Ⅎ𝑖⦋𝑤 / 𝑖⦌𝐶 |
| 44 | | csbeq1a 3542 |
. . . . 5
⊢ (𝑖 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑖⦌𝐶) |
| 45 | 42, 43, 44 | cbvsumi 14427 |
. . . 4
⊢
Σ𝑖 ∈
𝑍 𝐶 = Σ𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 |
| 46 | | csbeq1 3536 |
. . . . 5
⊢ (𝑤 = ( · ‘𝑧) → ⦋𝑤 / 𝑖⦌𝐶 = ⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 47 | | xpfi 8231 |
. . . . . 6
⊢ ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin) |
| 48 | 8, 16, 47 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) ∈ Fin) |
| 49 | | dvdsmulf1o.3 |
. . . . . 6
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 50 | | dvdsmulf1o.z |
. . . . . 6
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
| 51 | 3, 11, 49, 2, 10, 50 | dvdsmulf1o 24920 |
. . . . 5
⊢ (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |
| 52 | | fvres 6207 |
. . . . . 6
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧)) |
| 53 | 52 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧)) |
| 54 | 40 | ralrimivva 2971 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ 𝑋 ∀𝑘 ∈ 𝑌 𝐷 ∈ ℂ) |
| 55 | 36 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑗, 𝑘〉 → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
| 56 | 55 | ralxp 5263 |
. . . . . . . 8
⊢
(∀𝑧 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑗 ∈ 𝑋 ∀𝑘 ∈ 𝑌 𝐷 ∈ ℂ) |
| 57 | 54, 56 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
| 58 | | ax-mulf 10016 |
. . . . . . . . . 10
⊢ ·
:(ℂ × ℂ)⟶ℂ |
| 59 | | ffn 6045 |
. . . . . . . . . 10
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
| 60 | 58, 59 | ax-mp 5 |
. . . . . . . . 9
⊢ ·
Fn (ℂ × ℂ) |
| 61 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ⊆ ℕ |
| 62 | 2, 61 | eqsstri 3635 |
. . . . . . . . . . 11
⊢ 𝑋 ⊆
ℕ |
| 63 | | nnsscn 11025 |
. . . . . . . . . . 11
⊢ ℕ
⊆ ℂ |
| 64 | 62, 63 | sstri 3612 |
. . . . . . . . . 10
⊢ 𝑋 ⊆
ℂ |
| 65 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
| 66 | 10, 65 | eqsstri 3635 |
. . . . . . . . . . 11
⊢ 𝑌 ⊆
ℕ |
| 67 | 66, 63 | sstri 3612 |
. . . . . . . . . 10
⊢ 𝑌 ⊆
ℂ |
| 68 | | xpss12 5225 |
. . . . . . . . . 10
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
| 69 | 64, 67, 68 | mp2an 708 |
. . . . . . . . 9
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
| 70 | 46 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑤 = ( · ‘𝑧) → (⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ⦋(
· ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
| 71 | 70 | ralima 6498 |
. . . . . . . . 9
⊢ ((
· Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
(∀𝑤 ∈ (
· “ (𝑋 ×
𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
| 72 | 60, 69, 71 | mp2an 708 |
. . . . . . . 8
⊢
(∀𝑤 ∈ (
· “ (𝑋 ×
𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
| 73 | | df-ima 5127 |
. . . . . . . . . 10
⊢ (
· “ (𝑋 ×
𝑌)) = ran ( ·
↾ (𝑋 × 𝑌)) |
| 74 | | f1ofo 6144 |
. . . . . . . . . . 11
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 → ( · ↾
(𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
| 75 | | forn 6118 |
. . . . . . . . . . 11
⊢ ((
· ↾ (𝑋 ×
𝑌)):(𝑋 × 𝑌)–onto→𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍) |
| 76 | 51, 74, 75 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran ( · ↾
(𝑋 × 𝑌)) = 𝑍) |
| 77 | 73, 76 | syl5eq 2668 |
. . . . . . . . 9
⊢ (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍) |
| 78 | 77 | raleqdv 3144 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑤 ∈ ( · “
(𝑋 × 𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ)) |
| 79 | 72, 78 | syl5bbr 274 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ)) |
| 80 | 57, 79 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ) |
| 81 | 80 | r19.21bi 2932 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ) |
| 82 | 46, 48, 51, 53, 81 | fsumf1o 14454 |
. . . 4
⊢ (𝜑 → Σ𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 83 | 45, 82 | syl5eq 2668 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ 𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
| 84 | 41, 83 | eqtr4d 2659 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑖 ∈ 𝑍 𝐶) |
| 85 | 20, 28, 84 | 3eqtrd 2660 |
1
⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑖 ∈ 𝑍 𝐶) |