![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsprime | Structured version Visualization version GIF version |
Description: If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
Ref | Expression |
---|---|
dvdsprime | ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm2 15395 | . . 3 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)))) | |
2 | breq1 4656 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃)) | |
3 | eqeq1 2626 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 1 ↔ 𝑀 = 1)) | |
4 | eqeq1 2626 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑚 = 𝑃 ↔ 𝑀 = 𝑃)) | |
5 | 3, 4 | orbi12d 746 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 1 ∨ 𝑀 = 𝑃))) |
6 | orcom 402 | . . . . . . 7 ⊢ ((𝑀 = 1 ∨ 𝑀 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1)) | |
7 | 5, 6 | syl6bb 276 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝑚 = 1 ∨ 𝑚 = 𝑃) ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
8 | 2, 7 | imbi12d 334 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ↔ (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1)))) |
9 | 8 | rspccva 3308 | . . . 4 ⊢ ((∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃)) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
10 | 9 | adantll 750 | . . 3 ⊢ (((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑚 ∈ ℕ (𝑚 ∥ 𝑃 → (𝑚 = 1 ∨ 𝑚 = 𝑃))) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
11 | 1, 10 | sylanb 489 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 → (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
12 | prmz 15389 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
13 | iddvds 14995 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ 𝑃) |
16 | breq1 4656 | . . . 4 ⊢ (𝑀 = 𝑃 → (𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃)) | |
17 | 15, 16 | syl5ibrcom 237 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 𝑃 → 𝑀 ∥ 𝑃)) |
18 | 1dvds 14996 | . . . . . 6 ⊢ (𝑃 ∈ ℤ → 1 ∥ 𝑃) | |
19 | 12, 18 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∥ 𝑃) |
20 | 19 | adantr 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → 1 ∥ 𝑃) |
21 | breq1 4656 | . . . 4 ⊢ (𝑀 = 1 → (𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃)) | |
22 | 20, 21 | syl5ibrcom 237 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 = 1 → 𝑀 ∥ 𝑃)) |
23 | 17, 22 | jaod 395 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → ((𝑀 = 𝑃 ∨ 𝑀 = 1) → 𝑀 ∥ 𝑃)) |
24 | 11, 23 | impbid 202 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 class class class wbr 4653 ‘cfv 5888 1c1 9937 ℕcn 11020 2c2 11070 ℤcz 11377 ℤ≥cuz 11687 ∥ cdvds 14983 ℙcprime 15385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-prm 15386 |
This theorem is referenced by: prm2orodd 15404 pythagtriplem4 15524 odcau 18019 prmcyg 18295 2lgs 25132 goldbachthlem2 41458 fmtnofac1 41482 oddprmALTV 41598 |
Copyright terms: Public domain | W3C validator |