| Step | Hyp | Ref
| Expression |
| 1 | | 1nprm 15392 |
. . . 4
⊢ ¬ 1
∈ ℙ |
| 2 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ 𝐵 ⊆
{(0g‘𝐺)}) |
| 3 | | cygctb.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 5 | 3, 4 | grpidcl 17450 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 6 | 5 | snssd 4340 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
{(0g‘𝐺)}
⊆ 𝐵) |
| 7 | 6 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ {(0g‘𝐺)} ⊆ 𝐵) |
| 8 | 2, 7 | eqssd 3620 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ 𝐵 =
{(0g‘𝐺)}) |
| 9 | 8 | fveq2d 6195 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ (#‘𝐵) =
(#‘{(0g‘𝐺)})) |
| 10 | | fvex 6201 |
. . . . . . . 8
⊢
(0g‘𝐺) ∈ V |
| 11 | | hashsng 13159 |
. . . . . . . 8
⊢
((0g‘𝐺) ∈ V →
(#‘{(0g‘𝐺)}) = 1) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . 7
⊢
(#‘{(0g‘𝐺)}) = 1 |
| 13 | 9, 12 | syl6eq 2672 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ (#‘𝐵) =
1) |
| 14 | | simplr 792 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ (#‘𝐵) ∈
ℙ) |
| 15 | 13, 14 | eqeltrrd 2702 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ 1 ∈ ℙ) |
| 16 | 15 | ex 450 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) → (𝐵 ⊆
{(0g‘𝐺)}
→ 1 ∈ ℙ)) |
| 17 | 1, 16 | mtoi 190 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) → ¬
𝐵 ⊆
{(0g‘𝐺)}) |
| 18 | | nss 3663 |
. . 3
⊢ (¬
𝐵 ⊆
{(0g‘𝐺)}
↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) |
| 19 | 17, 18 | sylib 208 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) →
∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) |
| 20 | | eqid 2622 |
. . 3
⊢
(od‘𝐺) =
(od‘𝐺) |
| 21 | | simpll 790 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝐺 ∈ Grp) |
| 22 | | simprl 794 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝑥 ∈ 𝐵) |
| 23 | | simprr 796 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ¬ 𝑥 ∈
{(0g‘𝐺)}) |
| 24 | 20, 4, 3 | odeq1 17977 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g‘𝐺))) |
| 25 | 21, 22, 24 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g‘𝐺))) |
| 26 | | velsn 4193 |
. . . . . 6
⊢ (𝑥 ∈
{(0g‘𝐺)}
↔ 𝑥 =
(0g‘𝐺)) |
| 27 | 25, 26 | syl6bbr 278 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
| 28 | 23, 27 | mtbird 315 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ¬
((od‘𝐺)‘𝑥) = 1) |
| 29 | | prmnn 15388 |
. . . . . . . . . 10
⊢
((#‘𝐵) ∈
ℙ → (#‘𝐵)
∈ ℕ) |
| 30 | 29 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (#‘𝐵) ∈
ℕ) |
| 31 | 30 | nnnn0d 11351 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (#‘𝐵) ∈
ℕ0) |
| 32 | | fvex 6201 |
. . . . . . . . . 10
⊢
(Base‘𝐺)
∈ V |
| 33 | 3, 32 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
| 34 | | hashclb 13149 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(#‘𝐵) ∈
ℕ0)) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐵 ∈ Fin ↔
(#‘𝐵) ∈
ℕ0) |
| 36 | 31, 35 | sylibr 224 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝐵 ∈ Fin) |
| 37 | 3, 20 | oddvds2 17983 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∥ (#‘𝐵)) |
| 38 | 21, 36, 22, 37 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ((od‘𝐺)‘𝑥) ∥ (#‘𝐵)) |
| 39 | | simplr 792 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (#‘𝐵) ∈
ℙ) |
| 40 | 3, 20 | odcl2 17982 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 41 | 21, 36, 22, 40 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 42 | | dvdsprime 15400 |
. . . . . . 7
⊢
(((#‘𝐵) ∈
ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (#‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (#‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1))) |
| 43 | 39, 41, 42 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) ∥ (#‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (#‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1))) |
| 44 | 38, 43 | mpbid 222 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) = (#‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1)) |
| 45 | 44 | ord 392 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (¬
((od‘𝐺)‘𝑥) = (#‘𝐵) → ((od‘𝐺)‘𝑥) = 1)) |
| 46 | 28, 45 | mt3d 140 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ((od‘𝐺)‘𝑥) = (#‘𝐵)) |
| 47 | 3, 20, 21, 22, 46 | iscygodd 18290 |
. 2
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝐺 ∈ CycGrp) |
| 48 | 19, 47 | exlimddv 1863 |
1
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp) |