Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac1 Structured version   Visualization version   GIF version

Theorem fmtnofac1 41482
Description: Divisor of Fermat number (Euler's Result), see ProofWiki "Divisor of Fermat Number/Euler's Result", 24-Jul-2021, https://proofwiki.org/wiki/Divisor_of_Fermat_Number/Euler's_Result): "Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+1)+1 where k is a positive integer." Here, however, k must be a nonnegative integer, because k must be 0 to represent 1 (which is a divisor of Fn ).

Historical Note: In 1747, Leonhard Paul Euler proved that a divisor of a Fermat number Fn is always in the form kx2^(n+1)+1. This was later refined to k*2^(n+2)+1 by François Édouard Anatole Lucas, see fmtnofac2 41481. (Contributed by AV, 30-Jul-2021.)

Assertion
Ref Expression
fmtnofac1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 11765 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 5prm 15815 . . . . . . 7 5 ∈ ℙ
3 dvdsprime 15400 . . . . . . 7 ((5 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
42, 3mpan 706 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 ∥ 5 ↔ (𝑀 = 5 ∨ 𝑀 = 1)))
5 1nn0 11308 . . . . . . . . 9 1 ∈ ℕ0
65a1i 11 . . . . . . . 8 (𝑀 = 5 → 1 ∈ ℕ0)
7 simpl 473 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → 𝑀 = 5)
8 oveq1 6657 . . . . . . . . . . 11 (𝑘 = 1 → (𝑘 · 4) = (1 · 4))
98oveq1d 6665 . . . . . . . . . 10 (𝑘 = 1 → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
109adantl 482 . . . . . . . . 9 ((𝑀 = 5 ∧ 𝑘 = 1) → ((𝑘 · 4) + 1) = ((1 · 4) + 1))
117, 10eqeq12d 2637 . . . . . . . 8 ((𝑀 = 5 ∧ 𝑘 = 1) → (𝑀 = ((𝑘 · 4) + 1) ↔ 5 = ((1 · 4) + 1)))
12 df-5 11082 . . . . . . . . . 10 5 = (4 + 1)
13 4cn 11098 . . . . . . . . . . . . 13 4 ∈ ℂ
1413mulid2i 10043 . . . . . . . . . . . 12 (1 · 4) = 4
1514eqcomi 2631 . . . . . . . . . . 11 4 = (1 · 4)
1615oveq1i 6660 . . . . . . . . . 10 (4 + 1) = ((1 · 4) + 1)
1712, 16eqtri 2644 . . . . . . . . 9 5 = ((1 · 4) + 1)
1817a1i 11 . . . . . . . 8 (𝑀 = 5 → 5 = ((1 · 4) + 1))
196, 11, 18rspcedvd 3317 . . . . . . 7 (𝑀 = 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
20 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
2120a1i 11 . . . . . . . 8 (𝑀 = 1 → 0 ∈ ℕ0)
22 simpl 473 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → 𝑀 = 1)
23 oveq1 6657 . . . . . . . . . . 11 (𝑘 = 0 → (𝑘 · 4) = (0 · 4))
2423oveq1d 6665 . . . . . . . . . 10 (𝑘 = 0 → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2524adantl 482 . . . . . . . . 9 ((𝑀 = 1 ∧ 𝑘 = 0) → ((𝑘 · 4) + 1) = ((0 · 4) + 1))
2622, 25eqeq12d 2637 . . . . . . . 8 ((𝑀 = 1 ∧ 𝑘 = 0) → (𝑀 = ((𝑘 · 4) + 1) ↔ 1 = ((0 · 4) + 1)))
2713mul02i 10225 . . . . . . . . . . . 12 (0 · 4) = 0
2827oveq1i 6660 . . . . . . . . . . 11 ((0 · 4) + 1) = (0 + 1)
29 0p1e1 11132 . . . . . . . . . . 11 (0 + 1) = 1
3028, 29eqtri 2644 . . . . . . . . . 10 ((0 · 4) + 1) = 1
3130eqcomi 2631 . . . . . . . . 9 1 = ((0 · 4) + 1)
3231a1i 11 . . . . . . . 8 (𝑀 = 1 → 1 = ((0 · 4) + 1))
3321, 26, 32rspcedvd 3317 . . . . . . 7 (𝑀 = 1 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
3419, 33jaoi 394 . . . . . 6 ((𝑀 = 5 ∨ 𝑀 = 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))
354, 34syl6bi 243 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
36 fveq2 6191 . . . . . . . 8 (𝑁 = 1 → (FermatNo‘𝑁) = (FermatNo‘1))
37 fmtno1 41453 . . . . . . . 8 (FermatNo‘1) = 5
3836, 37syl6eq 2672 . . . . . . 7 (𝑁 = 1 → (FermatNo‘𝑁) = 5)
3938breq2d 4665 . . . . . 6 (𝑁 = 1 → (𝑀 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ 5))
40 oveq1 6657 . . . . . . . . . . . . 13 (𝑁 = 1 → (𝑁 + 1) = (1 + 1))
41 1p1e2 11134 . . . . . . . . . . . . 13 (1 + 1) = 2
4240, 41syl6eq 2672 . . . . . . . . . . . 12 (𝑁 = 1 → (𝑁 + 1) = 2)
4342oveq2d 6666 . . . . . . . . . . 11 (𝑁 = 1 → (2↑(𝑁 + 1)) = (2↑2))
44 sq2 12960 . . . . . . . . . . 11 (2↑2) = 4
4543, 44syl6eq 2672 . . . . . . . . . 10 (𝑁 = 1 → (2↑(𝑁 + 1)) = 4)
4645oveq2d 6666 . . . . . . . . 9 (𝑁 = 1 → (𝑘 · (2↑(𝑁 + 1))) = (𝑘 · 4))
4746oveq1d 6665 . . . . . . . 8 (𝑁 = 1 → ((𝑘 · (2↑(𝑁 + 1))) + 1) = ((𝑘 · 4) + 1))
4847eqeq2d 2632 . . . . . . 7 (𝑁 = 1 → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ 𝑀 = ((𝑘 · 4) + 1)))
4948rexbidv 3052 . . . . . 6 (𝑁 = 1 → (∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1)))
5039, 49imbi12d 334 . . . . 5 (𝑁 = 1 → ((𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)) ↔ (𝑀 ∥ 5 → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · 4) + 1))))
5135, 50syl5ibr 236 . . . 4 (𝑁 = 1 → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
52 fmtnofac2 41481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
53 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
54 2nn0 11309 . . . . . . . . . . . . 13 2 ∈ ℕ0
5554a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
5653, 55nn0mulcld 11356 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 · 2) ∈ ℕ0)
5756adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 2) ∈ ℕ0)
5857adantr 481 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · 2) ∈ ℕ0)
59 simpr 477 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
60 oveq1 6657 . . . . . . . . . . 11 (𝑘 = (𝑛 · 2) → (𝑘 · (2↑(𝑁 + 1))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
6160oveq1d 6665 . . . . . . . . . 10 (𝑘 = (𝑛 · 2) → ((𝑘 · (2↑(𝑁 + 1))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
6259, 61eqeqan12d 2638 . . . . . . . . 9 (((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) ∧ 𝑘 = (𝑛 · 2)) → (𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1) ↔ ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1)))
63 eluzge2nn0 11727 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6463nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
65 add1p1 11283 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
6664, 65syl 17 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → ((𝑁 + 1) + 1) = (𝑁 + 2))
6766eqcomd 2628 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) = ((𝑁 + 1) + 1))
6867oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2↑((𝑁 + 1) + 1)))
69 2cnd 11093 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
70 peano2nn0 11333 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7163, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
7269, 71expp1d 13009 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
7354a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
7473, 71nn0expcld 13031 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ0)
7574nn0cnd 11353 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
7675, 69mulcomd 10061 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2 · (2↑(𝑁 + 1))))
7768, 72, 763eqtrd 2660 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7877adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 2)) = (2 · (2↑(𝑁 + 1))))
7978oveq2d 6666 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
80 nn0cn 11302 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
8180adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
82 2cnd 11093 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8375adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℂ)
8481, 82, 83mulassd 10063 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → ((𝑛 · 2) · (2↑(𝑁 + 1))) = (𝑛 · (2 · (2↑(𝑁 + 1)))))
8579, 84eqtr4d 2659 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
86853ad2antl1 1223 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8786adantr 481 . . . . . . . . . 10 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑛 · (2↑(𝑁 + 2))) = ((𝑛 · 2) · (2↑(𝑁 + 1))))
8887oveq1d 6665 . . . . . . . . 9 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ((𝑛 · (2↑(𝑁 + 2))) + 1) = (((𝑛 · 2) · (2↑(𝑁 + 1))) + 1))
8958, 62, 88rspcedvd 3317 . . . . . . . 8 ((((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
9089ex 450 . . . . . . 7 (((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9190rexlimdva 3031 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → (∃𝑛 ∈ ℕ0 𝑀 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9252, 91mpd 15 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
93923exp 1264 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
9451, 93jaoi 394 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
951, 94sylbi 207 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
96953imp 1256 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cn 11020  2c2 11070  4c4 11072  5c5 11073  0cn0 11292  cuz 11687  cexp 12860  cdvds 14983  cprime 15385  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-prm 15386  df-odz 15470  df-phi 15471  df-pc 15542  df-lgs 25020  df-fmtno 41440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator