MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsf Structured version   Visualization version   GIF version

Theorem efgsf 18142
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
Assertion
Ref Expression
efgsf 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsf
StepHypRef Expression
1 id 22 . . . . . 6 (𝑚 = 𝑡𝑚 = 𝑡)
2 fveq2 6191 . . . . . . 7 (𝑚 = 𝑡 → (#‘𝑚) = (#‘𝑡))
32oveq1d 6665 . . . . . 6 (𝑚 = 𝑡 → ((#‘𝑚) − 1) = ((#‘𝑡) − 1))
41, 3fveq12d 6197 . . . . 5 (𝑚 = 𝑡 → (𝑚‘((#‘𝑚) − 1)) = (𝑡‘((#‘𝑡) − 1)))
54eleq1d 2686 . . . 4 (𝑚 = 𝑡 → ((𝑚‘((#‘𝑚) − 1)) ∈ 𝑊 ↔ (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
65ralrab2 3372 . . 3 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊 ↔ ∀𝑡 ∈ (Word 𝑊 ∖ {∅})(((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
7 eldifi 3732 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡 ∈ Word 𝑊)
8 wrdf 13310 . . . . . 6 (𝑡 ∈ Word 𝑊𝑡:(0..^(#‘𝑡))⟶𝑊)
97, 8syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡:(0..^(#‘𝑡))⟶𝑊)
10 eldifsn 4317 . . . . . . 7 (𝑡 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑡 ∈ Word 𝑊𝑡 ≠ ∅))
11 lennncl 13325 . . . . . . 7 ((𝑡 ∈ Word 𝑊𝑡 ≠ ∅) → (#‘𝑡) ∈ ℕ)
1210, 11sylbi 207 . . . . . 6 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (#‘𝑡) ∈ ℕ)
13 fzo0end 12560 . . . . . 6 ((#‘𝑡) ∈ ℕ → ((#‘𝑡) − 1) ∈ (0..^(#‘𝑡)))
1412, 13syl 17 . . . . 5 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → ((#‘𝑡) − 1) ∈ (0..^(#‘𝑡)))
159, 14ffvelrnd 6360 . . . 4 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊)
1615a1d 25 . . 3 (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((#‘𝑡) − 1)) ∈ 𝑊))
176, 16mprgbir 2927 . 2 𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊
18 efgred.s . . 3 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
1918fmpt 6381 . 2 (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((#‘𝑚) − 1)) ∈ 𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
2017, 19mpbi 220 1 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cdif 3571  c0 3915  {csn 4177  cop 4183  cotp 4185   ciun 4520  cmpt 4729   I cid 5023   × cxp 5112  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554  0cc0 9936  1c1 9937  cmin 10266  cn 11020  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   splice csplice 13296  ⟨“cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  efgsdm  18143  efgsval  18144  efgsp1  18150  efgsfo  18152  efgredleme  18156  efgred  18161
  Copyright terms: Public domain W3C validator