| Step | Hyp | Ref
| Expression |
| 1 | | efgval.w |
. . . . . . . 8
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2𝑜)) |
| 2 | | efgval.r |
. . . . . . . 8
⊢ ∼ = (
~FG ‘𝐼) |
| 3 | | efgval2.m |
. . . . . . . 8
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦
〈𝑦,
(1𝑜 ∖ 𝑧)〉) |
| 4 | | efgval2.t |
. . . . . . . 8
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦
(𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| 5 | | efgred.d |
. . . . . . . 8
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| 6 | | efgred.s |
. . . . . . . 8
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) |
| 7 | 1, 2, 3, 4, 5, 6 | efgsdm 18143 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 8 | 7 | simp1bi 1076 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 10 | 9 | eldifad 3586 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐹 ∈ Word 𝑊) |
| 11 | 1, 2, 3, 4, 5, 6 | efgsf 18142 |
. . . . . . . . . . . 12
⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 |
| 12 | 11 | fdmi 6052 |
. . . . . . . . . . . . 13
⊢ dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} |
| 13 | 12 | feq2i 6037 |
. . . . . . . . . . . 12
⊢ (𝑆:dom 𝑆⟶𝑊 ↔ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊) |
| 14 | 11, 13 | mpbir 221 |
. . . . . . . . . . 11
⊢ 𝑆:dom 𝑆⟶𝑊 |
| 15 | 14 | ffvelrni 6358 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) ∈ 𝑊) |
| 16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑆‘𝐹) ∈ 𝑊) |
| 17 | 1, 2, 3, 4 | efgtf 18135 |
. . . . . . . . 9
⊢ ((𝑆‘𝐹) ∈ 𝑊 → ((𝑇‘(𝑆‘𝐹)) = (𝑎 ∈ (0...(#‘(𝑆‘𝐹))), 𝑖 ∈ (𝐼 × 2𝑜) ↦
((𝑆‘𝐹) splice 〈𝑎, 𝑎, 〈“𝑖(𝑀‘𝑖)”〉〉)) ∧ (𝑇‘(𝑆‘𝐹)):((0...(#‘(𝑆‘𝐹))) × (𝐼 ×
2𝑜))⟶𝑊)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝑇‘(𝑆‘𝐹)) = (𝑎 ∈ (0...(#‘(𝑆‘𝐹))), 𝑖 ∈ (𝐼 × 2𝑜) ↦
((𝑆‘𝐹) splice 〈𝑎, 𝑎, 〈“𝑖(𝑀‘𝑖)”〉〉)) ∧ (𝑇‘(𝑆‘𝐹)):((0...(#‘(𝑆‘𝐹))) × (𝐼 ×
2𝑜))⟶𝑊)) |
| 19 | 18 | simprd 479 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑇‘(𝑆‘𝐹)):((0...(#‘(𝑆‘𝐹))) × (𝐼 ×
2𝑜))⟶𝑊) |
| 20 | | frn 6053 |
. . . . . . 7
⊢ ((𝑇‘(𝑆‘𝐹)):((0...(#‘(𝑆‘𝐹))) × (𝐼 ×
2𝑜))⟶𝑊 → ran (𝑇‘(𝑆‘𝐹)) ⊆ 𝑊) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ran (𝑇‘(𝑆‘𝐹)) ⊆ 𝑊) |
| 22 | | simpr 477 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) |
| 23 | 21, 22 | sseldd 3604 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐴 ∈ 𝑊) |
| 24 | 23 | s1cld 13383 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 〈“𝐴”〉 ∈ Word 𝑊) |
| 25 | | ccatcl 13359 |
. . . 4
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊) |
| 26 | 10, 24, 25 | syl2anc 693 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊) |
| 27 | | ccatlen 13360 |
. . . . . . 7
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (#‘(𝐹 ++ 〈“𝐴”〉)) = ((#‘𝐹) + (#‘〈“𝐴”〉))) |
| 28 | 10, 24, 27 | syl2anc 693 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘(𝐹 ++ 〈“𝐴”〉)) = ((#‘𝐹) + (#‘〈“𝐴”〉))) |
| 29 | | s1len 13385 |
. . . . . . 7
⊢
(#‘〈“𝐴”〉) = 1 |
| 30 | 29 | oveq2i 6661 |
. . . . . 6
⊢
((#‘𝐹) +
(#‘〈“𝐴”〉)) = ((#‘𝐹) + 1) |
| 31 | 28, 30 | syl6eq 2672 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘(𝐹 ++ 〈“𝐴”〉)) = ((#‘𝐹) + 1)) |
| 32 | | lencl 13324 |
. . . . . 6
⊢ (𝐹 ∈ Word 𝑊 → (#‘𝐹) ∈
ℕ0) |
| 33 | | nn0p1nn 11332 |
. . . . . 6
⊢
((#‘𝐹) ∈
ℕ0 → ((#‘𝐹) + 1) ∈ ℕ) |
| 34 | 10, 32, 33 | 3syl 18 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((#‘𝐹) + 1) ∈ ℕ) |
| 35 | 31, 34 | eqeltrd 2701 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘(𝐹 ++ 〈“𝐴”〉)) ∈
ℕ) |
| 36 | | wrdfin 13323 |
. . . . 5
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊 → (𝐹 ++ 〈“𝐴”〉) ∈ Fin) |
| 37 | | hashnncl 13157 |
. . . . 5
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ Fin →
((#‘(𝐹 ++
〈“𝐴”〉)) ∈ ℕ ↔ (𝐹 ++ 〈“𝐴”〉) ≠
∅)) |
| 38 | 26, 36, 37 | 3syl 18 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((#‘(𝐹 ++ 〈“𝐴”〉)) ∈ ℕ ↔ (𝐹 ++ 〈“𝐴”〉) ≠
∅)) |
| 39 | 35, 38 | mpbid 222 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ≠
∅) |
| 40 | | eldifsn 4317 |
. . 3
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ (Word
𝑊 ∖ {∅}) ↔
((𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊 ∧ (𝐹 ++ 〈“𝐴”〉) ≠
∅)) |
| 41 | 26, 39, 40 | sylanbrc 698 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ (Word 𝑊 ∖
{∅})) |
| 42 | | eldifsni 4320 |
. . . . . . 7
⊢ (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ≠ ∅) |
| 43 | 9, 42 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐹 ≠ ∅) |
| 44 | | wrdfin 13323 |
. . . . . . 7
⊢ (𝐹 ∈ Word 𝑊 → 𝐹 ∈ Fin) |
| 45 | | hashnncl 13157 |
. . . . . . 7
⊢ (𝐹 ∈ Fin →
((#‘𝐹) ∈ ℕ
↔ 𝐹 ≠
∅)) |
| 46 | 10, 44, 45 | 3syl 18 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((#‘𝐹) ∈ ℕ ↔ 𝐹 ≠ ∅)) |
| 47 | 43, 46 | mpbird 247 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘𝐹) ∈ ℕ) |
| 48 | | lbfzo0 12507 |
. . . . 5
⊢ (0 ∈
(0..^(#‘𝐹)) ↔
(#‘𝐹) ∈
ℕ) |
| 49 | 47, 48 | sylibr 224 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 0 ∈ (0..^(#‘𝐹))) |
| 50 | | ccatval1 13361 |
. . . 4
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(#‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) = (𝐹‘0)) |
| 51 | 10, 24, 49, 50 | syl3anc 1326 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) = (𝐹‘0)) |
| 52 | 7 | simp2bi 1077 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷) |
| 53 | 52 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹‘0) ∈ 𝐷) |
| 54 | 51, 53 | eqeltrd 2701 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) ∈ 𝐷) |
| 55 | 7 | simp3bi 1078 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 56 | 55 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 57 | | fzo0ss1 12498 |
. . . . . . . . . . 11
⊢
(1..^(#‘𝐹))
⊆ (0..^(#‘𝐹)) |
| 58 | 57 | sseli 3599 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → 𝑖 ∈ (0..^(#‘𝐹))) |
| 59 | | ccatval1 13361 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (0..^(#‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = (𝐹‘𝑖)) |
| 60 | 58, 59 | syl3an3 1361 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(#‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = (𝐹‘𝑖)) |
| 61 | | elfzoel2 12469 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (#‘𝐹) ∈
ℤ) |
| 62 | | peano2zm 11420 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) ∈
ℤ → ((#‘𝐹)
− 1) ∈ ℤ) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → ((#‘𝐹) − 1) ∈
ℤ) |
| 64 | 61 | zred 11482 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (#‘𝐹) ∈
ℝ) |
| 65 | 64 | lem1d 10957 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → ((#‘𝐹) − 1) ≤ (#‘𝐹)) |
| 66 | | eluz2 11693 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) ∈
(ℤ≥‘((#‘𝐹) − 1)) ↔ (((#‘𝐹) − 1) ∈ ℤ
∧ (#‘𝐹) ∈
ℤ ∧ ((#‘𝐹)
− 1) ≤ (#‘𝐹))) |
| 67 | 63, 61, 65, 66 | syl3anbrc 1246 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (#‘𝐹) ∈
(ℤ≥‘((#‘𝐹) − 1))) |
| 68 | | fzoss2 12496 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) ∈
(ℤ≥‘((#‘𝐹) − 1)) → (0..^((#‘𝐹) − 1)) ⊆
(0..^(#‘𝐹))) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (0..^((#‘𝐹) − 1)) ⊆
(0..^(#‘𝐹))) |
| 70 | | elfzoelz 12470 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → 𝑖 ∈ ℤ) |
| 71 | | elfzom1b 12567 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℤ ∧
(#‘𝐹) ∈ ℤ)
→ (𝑖 ∈
(1..^(#‘𝐹)) ↔
(𝑖 − 1) ∈
(0..^((#‘𝐹) −
1)))) |
| 72 | 70, 61, 71 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (𝑖 ∈ (1..^(#‘𝐹)) ↔ (𝑖 − 1) ∈ (0..^((#‘𝐹) − 1)))) |
| 73 | 72 | ibi 256 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (𝑖 − 1) ∈ (0..^((#‘𝐹) − 1))) |
| 74 | 69, 73 | sseldd 3604 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1..^(#‘𝐹)) → (𝑖 − 1) ∈ (0..^(#‘𝐹))) |
| 75 | | ccatval1 13361 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ (𝑖 − 1) ∈ (0..^(#‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
| 76 | 74, 75 | syl3an3 1361 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(#‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
| 77 | 76 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(#‘𝐹))) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 78 | 77 | rneqd 5353 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(#‘𝐹))) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 79 | 60, 78 | eleq12d 2695 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(#‘𝐹))) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 80 | 79 | 3expa 1265 |
. . . . . . 7
⊢ (((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) ∧ 𝑖 ∈ (1..^(#‘𝐹))) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 81 | 80 | ralbidva 2985 |
. . . . . 6
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (∀𝑖 ∈ (1..^(#‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 82 | 10, 24, 81 | syl2anc 693 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (∀𝑖 ∈ (1..^(#‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 83 | 56, 82 | mpbird 247 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(#‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
| 84 | 10, 32 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘𝐹) ∈
ℕ0) |
| 85 | 84 | nn0cnd 11353 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘𝐹) ∈ ℂ) |
| 86 | 85 | addid2d 10237 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (0 + (#‘𝐹)) = (#‘𝐹)) |
| 87 | 86 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 + (#‘𝐹))) = ((𝐹 ++ 〈“𝐴”〉)‘(#‘𝐹))) |
| 88 | | 1nn 11031 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 89 | 29, 88 | eqeltri 2697 |
. . . . . . . . . 10
⊢
(#‘〈“𝐴”〉) ∈
ℕ |
| 90 | 89 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘〈“𝐴”〉) ∈
ℕ) |
| 91 | | lbfzo0 12507 |
. . . . . . . . 9
⊢ (0 ∈
(0..^(#‘〈“𝐴”〉)) ↔
(#‘〈“𝐴”〉) ∈
ℕ) |
| 92 | 90, 91 | sylibr 224 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 0 ∈
(0..^(#‘〈“𝐴”〉))) |
| 93 | | ccatval3 13363 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 0 ∈
(0..^(#‘〈“𝐴”〉))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 + (#‘𝐹))) = (〈“𝐴”〉‘0)) |
| 94 | 10, 24, 92, 93 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 + (#‘𝐹))) = (〈“𝐴”〉‘0)) |
| 95 | 87, 94 | eqtr3d 2658 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(#‘𝐹)) = (〈“𝐴”〉‘0)) |
| 96 | | s1fv 13390 |
. . . . . . . 8
⊢ (𝐴 ∈ ran (𝑇‘(𝑆‘𝐹)) → (〈“𝐴”〉‘0) = 𝐴) |
| 97 | 96 | adantl 482 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (〈“𝐴”〉‘0) = 𝐴) |
| 98 | | fzo0end 12560 |
. . . . . . . . . . . 12
⊢
((#‘𝐹) ∈
ℕ → ((#‘𝐹)
− 1) ∈ (0..^(#‘𝐹))) |
| 99 | 47, 98 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) |
| 100 | | ccatval1 13361 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)) = (𝐹‘((#‘𝐹) − 1))) |
| 101 | 10, 24, 99, 100 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)) = (𝐹‘((#‘𝐹) − 1))) |
| 102 | 1, 2, 3, 4, 5, 6 | efgsval 18144 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((#‘𝐹) − 1))) |
| 103 | 102 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑆‘𝐹) = (𝐹‘((#‘𝐹) − 1))) |
| 104 | 101, 103 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)) = (𝑆‘𝐹)) |
| 105 | 104 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1))) = (𝑇‘(𝑆‘𝐹))) |
| 106 | 105 | rneqd 5353 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1))) = ran (𝑇‘(𝑆‘𝐹))) |
| 107 | 22, 97, 106 | 3eltr4d 2716 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (〈“𝐴”〉‘0) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)))) |
| 108 | 95, 107 | eqeltrd 2701 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(#‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)))) |
| 109 | | fvex 6201 |
. . . . . 6
⊢
(#‘𝐹) ∈
V |
| 110 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑖 = (#‘𝐹) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = ((𝐹 ++ 〈“𝐴”〉)‘(#‘𝐹))) |
| 111 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑖 = (#‘𝐹) → (𝑖 − 1) = ((#‘𝐹) − 1)) |
| 112 | 111 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑖 = (#‘𝐹) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = ((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1))) |
| 113 | 112 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑖 = (#‘𝐹) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)))) |
| 114 | 113 | rneqd 5353 |
. . . . . . 7
⊢ (𝑖 = (#‘𝐹) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)))) |
| 115 | 110, 114 | eleq12d 2695 |
. . . . . 6
⊢ (𝑖 = (#‘𝐹) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ((𝐹 ++ 〈“𝐴”〉)‘(#‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) −
1))))) |
| 116 | 109, 115 | ralsn 4222 |
. . . . 5
⊢
(∀𝑖 ∈
{(#‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ((𝐹 ++ 〈“𝐴”〉)‘(#‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((#‘𝐹) − 1)))) |
| 117 | 108, 116 | sylibr 224 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ {(#‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
| 118 | | ralunb 3794 |
. . . 4
⊢
(∀𝑖 ∈
((1..^(#‘𝐹)) ∪
{(#‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (∀𝑖 ∈ (1..^(#‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ∧ ∀𝑖 ∈ {(#‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) |
| 119 | 83, 117, 118 | sylanbrc 698 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ ((1..^(#‘𝐹)) ∪ {(#‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
| 120 | 31 | oveq2d 6666 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^(#‘(𝐹 ++ 〈“𝐴”〉))) = (1..^((#‘𝐹) + 1))) |
| 121 | | nnuz 11723 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 122 | 47, 121 | syl6eleq 2711 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (#‘𝐹) ∈
(ℤ≥‘1)) |
| 123 | | fzosplitsn 12576 |
. . . . . 6
⊢
((#‘𝐹) ∈
(ℤ≥‘1) → (1..^((#‘𝐹) + 1)) = ((1..^(#‘𝐹)) ∪ {(#‘𝐹)})) |
| 124 | 122, 123 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^((#‘𝐹) + 1)) = ((1..^(#‘𝐹)) ∪ {(#‘𝐹)})) |
| 125 | 120, 124 | eqtrd 2656 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^(#‘(𝐹 ++ 〈“𝐴”〉))) = ((1..^(#‘𝐹)) ∪ {(#‘𝐹)})) |
| 126 | 125 | raleqdv 3144 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (∀𝑖 ∈ (1..^(#‘(𝐹 ++ 〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈ ((1..^(#‘𝐹)) ∪ {(#‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) |
| 127 | 119, 126 | mpbird 247 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(#‘(𝐹 ++ 〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
| 128 | 1, 2, 3, 4, 5, 6 | efgsdm 18143 |
. 2
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆 ↔ ((𝐹 ++ 〈“𝐴”〉) ∈ (Word 𝑊 ∖ {∅}) ∧
((𝐹 ++ 〈“𝐴”〉)‘0) ∈
𝐷 ∧ ∀𝑖 ∈ (1..^(#‘(𝐹 ++ 〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) |
| 129 | 41, 54, 127, 128 | syl3anbrc 1246 |
1
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆) |