MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p2 Structured version   Visualization version   GIF version

Theorem efgt1p2 14844
Description: The exponential function of a positive real number is greater than the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . 3 0 = (ℤ‘0)
2 1nn0 11308 . . 3 1 ∈ ℕ0
3 df-2 11079 . . 3 2 = (1 + 1)
4 rpcn 11841 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
5 0nn0 11307 . . . . 5 0 ∈ ℕ0
6 1e0p1 11552 . . . . 5 1 = (0 + 1)
7 0z 11388 . . . . . 6 0 ∈ ℤ
8 eqid 2622 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 14807 . . . . . . . 8 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
105, 9ax-mp 5 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
11 eft0val 14842 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
1210, 11syl5eq 2668 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
137, 12seq1i 12815 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
148eftval 14807 . . . . . . 7 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
152, 14ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
16 fac1 13064 . . . . . . . 8 (!‘1) = 1
1716oveq2i 6661 . . . . . . 7 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
18 exp1 12866 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1918oveq1d 6665 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
20 div1 10716 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2119, 20eqtrd 2656 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2217, 21syl5eq 2668 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2315, 22syl5eq 2668 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
241, 5, 6, 13, 23seqp1i 12817 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
254, 24syl 17 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
26 2nn0 11309 . . . . . 6 2 ∈ ℕ0
278eftval 14807 . . . . . 6 (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
2826, 27ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))
29 fac2 13066 . . . . . 6 (!‘2) = 2
3029oveq2i 6661 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
3128, 30eqtri 2644 . . . 4 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)
3231a1i 11 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
331, 2, 3, 25, 32seqp1i 12817 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
34 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
3526a1i 11 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
368, 34, 35effsumlt 14841 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
3733, 36eqbrtrrd 4677 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074   / cdiv 10684  2c2 11070  0cn0 11292  +crp 11832  seqcseq 12801  cexp 12860  !cfa 13060  expce 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798
This theorem is referenced by:  cxp2limlem  24702  pntpbnd1a  25274
  Copyright terms: Public domain W3C validator