MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlksnlem2 Structured version   Visualization version   GIF version

Theorem eleclclwwlksnlem2 26939
Description: Lemma 2 for eleclclwwlksn 26953. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlksn1.w 𝑊 = (𝑁 ClWWalksN 𝐺)
Assertion
Ref Expression
eleclclwwlksnlem2 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐺   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑘,𝑚,𝑛   𝑥,𝑚,𝑛
Allowed substitution hints:   𝐺(𝑥,𝑘)   𝑁(𝑥,𝑘)   𝑊(𝑥,𝑘,𝑚,𝑛)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)

Proof of Theorem eleclclwwlksnlem2
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑘 ∈ (0...𝑁))
21anim1i 592 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
32adantr 481 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
4 simpr 477 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑋 = (𝑥 cyclShift 𝑘))
54adantr 481 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑋 = (𝑥 cyclShift 𝑘))
65anim1i 592 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
7 erclwwlksn1.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
87eleclclwwlksnlem1 26938 . . 3 ((𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)) → ((𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
93, 6, 8sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
10 eqid 2622 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknbp 26885 . . . . . . . . . . 11 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁))
1211, 7eleq2s 2719 . . . . . . . . . 10 (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁))
13 fznn0sub2 12446 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ (0...𝑁))
14 oveq1 6657 . . . . . . . . . . . . 13 ((#‘𝑥) = 𝑁 → ((#‘𝑥) − 𝑘) = (𝑁𝑘))
1514eleq1d 2686 . . . . . . . . . . . 12 ((#‘𝑥) = 𝑁 → (((#‘𝑥) − 𝑘) ∈ (0...𝑁) ↔ (𝑁𝑘) ∈ (0...𝑁)))
1613, 15syl5ibr 236 . . . . . . . . . . 11 ((#‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁)))
1716adantl 482 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁)))
1812, 17syl 17 . . . . . . . . 9 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁)))
1918adantl 482 . . . . . . . 8 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁)))
2019com12 32 . . . . . . 7 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁)))
2120adantr 481 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁)))
2221imp 445 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁))
2322adantr 481 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ((#‘𝑥) − 𝑘) ∈ (0...𝑁))
24 simpr 477 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋𝑊𝑥𝑊))
2524ancomd 467 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥𝑊𝑋𝑊))
2625adantr 481 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥𝑊𝑋𝑊))
2723, 26jca 554 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (((#‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)))
28 simpll 790 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ Word (Vtx‘𝐺))
29 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑥) → (0...𝑁) = (0...(#‘𝑥)))
3029eleq2d 2687 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑥) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(#‘𝑥))))
3130eqcoms 2630 . . . . . . . . . . . . . . 15 ((#‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(#‘𝑥))))
3231adantl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(#‘𝑥))))
3332biimpa 501 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(#‘𝑥)))
3428, 33jca 554 . . . . . . . . . . . 12 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥))))
3534ex 450 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥)))))
3612, 35syl 17 . . . . . . . . . 10 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥)))))
3736adantl 482 . . . . . . . . 9 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥)))))
3837com12 32 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥)))))
3938adantr 481 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥)))))
4039imp 445 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥))))
414eqcomd 2628 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → (𝑥 cyclShift 𝑘) = 𝑋)
4241adantr 481 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 cyclShift 𝑘) = 𝑋)
43 oveq1 6657 . . . . . . . 8 (𝑋 = (𝑥 cyclShift 𝑘) → (𝑋 cyclShift ((#‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((#‘𝑥) − 𝑘)))
4443eqcoms 2630 . . . . . . 7 ((𝑥 cyclShift 𝑘) = 𝑋 → (𝑋 cyclShift ((#‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((#‘𝑥) − 𝑘)))
45 elfzelz 12342 . . . . . . . 8 (𝑘 ∈ (0...(#‘𝑥)) → 𝑘 ∈ ℤ)
46 2cshwid 13560 . . . . . . . 8 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ ℤ) → ((𝑥 cyclShift 𝑘) cyclShift ((#‘𝑥) − 𝑘)) = 𝑥)
4745, 46sylan2 491 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥))) → ((𝑥 cyclShift 𝑘) cyclShift ((#‘𝑥) − 𝑘)) = 𝑥)
4844, 47sylan9eqr 2678 . . . . . 6 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(#‘𝑥))) ∧ (𝑥 cyclShift 𝑘) = 𝑋) → (𝑋 cyclShift ((#‘𝑥) − 𝑘)) = 𝑥)
4940, 42, 48syl2anc 693 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋 cyclShift ((#‘𝑥) − 𝑘)) = 𝑥)
5049eqcomd 2628 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑥 = (𝑋 cyclShift ((#‘𝑥) − 𝑘)))
5150anim1i 592 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥 = (𝑋 cyclShift ((#‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
527eleclclwwlksnlem1 26938 . . 3 ((((#‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)) → ((𝑥 = (𝑋 cyclShift ((#‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
5327, 51, 52sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚))
549, 53impbida 877 1 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cfv 5888  (class class class)co 6650  0cc0 9936  cmin 10266  cz 11377  ...cfz 12326  #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  eleclclwwlksn  26953
  Copyright terms: Public domain W3C validator