![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzom1elp1fzo | Structured version Visualization version GIF version |
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
Ref | Expression |
---|---|
elfzom1elp1fzo | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzofz 12485 | . . . . . . 7 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1))) | |
2 | elfzuz2 12346 | . . . . . . 7 ⊢ (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘0)) | |
3 | elnn0uz 11725 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) | |
4 | zcn 11382 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | 4 | anim1i 592 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
6 | elnnnn0 11336 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | |
7 | 5, 6 | sylibr 224 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ) |
8 | 7 | expcom 451 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
9 | 3, 8 | sylbir 225 | . . . . . . 7 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
10 | 1, 2, 9 | 3syl 18 | . . . . . 6 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
11 | 10 | impcom 446 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ) |
12 | 1nn0 11308 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
14 | nnnn0 11299 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | nnge1 11046 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
16 | 13, 14, 15 | 3jca 1242 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
17 | 11, 16 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
18 | elfz2nn0 12431 | . . . 4 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
19 | 17, 18 | sylibr 224 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁)) |
20 | fzossrbm1 12497 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
22 | fzossfz 12488 | . . . . . 6 ⊢ (0..^𝑁) ⊆ (0...𝑁) | |
23 | 21, 22 | syl6ss 3615 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁)) |
24 | simpr 477 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1))) | |
25 | 23, 24 | jca 554 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1)))) |
26 | ssel2 3598 | . . . 4 ⊢ (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁)) | |
27 | elfzubelfz 12353 | . . . 4 ⊢ (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁)) | |
28 | 25, 26, 27 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁)) |
29 | 19, 28 | jca 554 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) |
30 | elfzodifsumelfzo 12533 | . 2 ⊢ ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁))) | |
31 | 29, 24, 30 | sylc 65 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 ⊆ wss 3574 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 + caddc 9939 ≤ cle 10075 − cmin 10266 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ℤ≥cuz 11687 ...cfz 12326 ..^cfzo 12465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 |
This theorem is referenced by: clwlkclwwlk 26903 clwwlkinwwlk 26905 clwwlksf 26915 clwlksfclwwlk 26962 |
Copyright terms: Public domain | W3C validator |