![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erng1lem | Structured version Visualization version GIF version |
Description: Value of the endomorphism division ring unit. (Contributed by NM, 12-Oct-2013.) |
Ref | Expression |
---|---|
erng1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erng1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erng1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erng1.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng1.r | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) |
Ref | Expression |
---|---|
erng1lem | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erng1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erng1.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendoidcl 36057 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
5 | erng1.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
6 | eqid 2622 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
7 | 1, 2, 3, 5, 6 | erngbase 36089 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
8 | 4, 7 | eleqtrrd 2704 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷)) |
9 | 7 | eleq2d 2687 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ (Base‘𝐷) ↔ 𝑢 ∈ 𝐸)) |
10 | simpl 473 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 4 | adantr 481 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → ( I ↾ 𝑇) ∈ 𝐸) |
12 | simpr 477 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → 𝑢 ∈ 𝐸) | |
13 | eqid 2622 | . . . . . . . . 9 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
14 | 1, 2, 3, 5, 13 | erngmul 36094 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = (( I ↾ 𝑇) ∘ 𝑢)) |
15 | 10, 11, 12, 14 | syl12anc 1324 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = (( I ↾ 𝑇) ∘ 𝑢)) |
16 | 1, 2, 3 | tendo1mul 36058 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇) ∘ 𝑢) = 𝑢) |
17 | 15, 16 | eqtrd 2656 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢) |
18 | 1, 2, 3, 5, 13 | erngmul 36094 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ 𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = (𝑢 ∘ ( I ↾ 𝑇))) |
19 | 10, 12, 11, 18 | syl12anc 1324 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = (𝑢 ∘ ( I ↾ 𝑇))) |
20 | 1, 2, 3 | tendo1mulr 36059 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢 ∘ ( I ↾ 𝑇)) = 𝑢) |
21 | 19, 20 | eqtrd 2656 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢) |
22 | 17, 21 | jca 554 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑢 ∈ 𝐸) → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) |
23 | 22 | ex 450 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ 𝐸 → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢))) |
24 | 9, 23 | sylbid 230 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑢 ∈ (Base‘𝐷) → ((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢))) |
25 | 24 | ralrimiv 2965 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) |
26 | erng1.r | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Ring) | |
27 | eqid 2622 | . . . 4 ⊢ (1r‘𝐷) = (1r‘𝐷) | |
28 | 6, 13, 27 | isringid 18573 | . . 3 ⊢ (𝐷 ∈ Ring → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r‘𝐷) = ( I ↾ 𝑇))) |
29 | 26, 28 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ∀𝑢 ∈ (Base‘𝐷)((( I ↾ 𝑇)(.r‘𝐷)𝑢) = 𝑢 ∧ (𝑢(.r‘𝐷)( I ↾ 𝑇)) = 𝑢)) ↔ (1r‘𝐷) = ( I ↾ 𝑇))) |
30 | 8, 25, 29 | mpbi2and 956 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐷) = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 I cid 5023 ↾ cres 5116 ∘ ccom 5118 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 .rcmulr 15942 1rcur 18501 Ringcrg 18547 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 TEndoctendo 36040 EDRingcedring 36041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mgp 18490 df-ur 18502 df-ring 18549 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 df-edring 36045 |
This theorem is referenced by: erngdvlem4 36279 |
Copyright terms: Public domain | W3C validator |