MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzim Structured version   Visualization version   GIF version

Theorem fzofzim 12514
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 12431 . . . 4 (𝐾 ∈ (0...𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀))
2 simpl1 1064 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 ∈ ℕ0)
3 necom 2847 . . . . . . . . 9 (𝐾𝑀𝑀𝐾)
4 nn0re 11301 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
5 nn0re 11301 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
6 ltlen 10138 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
74, 5, 6syl2an 494 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
87bicomd 213 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) ↔ 𝐾 < 𝑀))
9 elnn0z 11390 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
10 0red 10041 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
11 zre 11381 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
135adantl 482 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
14 lelttr 10128 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
1510, 12, 13, 14syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
16 nn0z 11400 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
17 elnnz 11387 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1817simplbi2 655 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1916, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (0 < 𝑀𝑀 ∈ ℕ))
2019adantl 482 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 < 𝑀𝑀 ∈ ℕ))
2115, 20syld 47 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 𝑀 ∈ ℕ))
2221expd 452 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝐾 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2322impancom 456 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
249, 23sylbi 207 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2524imp 445 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀𝑀 ∈ ℕ))
268, 25sylbid 230 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝑀 ∈ ℕ))
2726expd 452 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝑀𝐾𝑀 ∈ ℕ)))
283, 27syl7bi 245 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝐾𝑀𝑀 ∈ ℕ)))
29283impia 1261 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝑀 ∈ ℕ))
3029imp 445 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝑀 ∈ ℕ)
318biimpd 219 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝐾 < 𝑀))
3231exp4b 632 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → (𝑀𝐾𝐾 < 𝑀))))
33323imp 1256 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝑀𝐾𝐾 < 𝑀))
343, 33syl5bi 232 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝐾 < 𝑀))
3534imp 445 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 < 𝑀)
362, 30, 353jca 1242 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
3736ex 450 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
381, 37sylbi 207 . . 3 (𝐾 ∈ (0...𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
3938impcom 446 . 2 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
40 elfzo0 12508 . 2 (𝐾 ∈ (0..^𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
4139, 40sylibr 224 1 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936   < clt 10074  cle 10075  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  cshwshashlem1  15802  clwwisshclwwsn  26929
  Copyright terms: Public domain W3C validator