MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnbnd Structured version   Visualization version   GIF version

Theorem expnbnd 12993
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.)
Assertion
Ref Expression
expnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘

Proof of Theorem expnbnd
StepHypRef Expression
1 1nn 11031 . . 3 1 ∈ ℕ
2 1re 10039 . . . . . . . 8 1 ∈ ℝ
3 lttr 10114 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
42, 3mp3an2 1412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 1 ∧ 1 < 𝐵) → 𝐴 < 𝐵))
54exp4b 632 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 1 → (1 < 𝐵𝐴 < 𝐵))))
65com34 91 . . . . 5 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (𝐴 < 1 → 𝐴 < 𝐵))))
763imp1 1280 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < 𝐵)
8 recn 10026 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
9 exp1 12866 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑1) = 𝐵)
108, 9syl 17 . . . . . 6 (𝐵 ∈ ℝ → (𝐵↑1) = 𝐵)
11103ad2ant2 1083 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵↑1) = 𝐵)
1211adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → (𝐵↑1) = 𝐵)
137, 12breqtrrd 4681 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → 𝐴 < (𝐵↑1))
14 oveq2 6658 . . . . 5 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
1514breq2d 4665 . . . 4 (𝑘 = 1 → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑1)))
1615rspcev 3309 . . 3 ((1 ∈ ℕ ∧ 𝐴 < (𝐵↑1)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
171, 13, 16sylancr 695 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝐴 < 1) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
18 peano2rem 10348 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1918adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
20 peano2rem 10348 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
2120adantr 481 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ)
2221adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
23 posdif 10521 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
242, 23mpan 706 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
2524biimpa 501 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < (𝐵 − 1))
2625gt0ne0d 10592 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ≠ 0)
2726adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ≠ 0)
2819, 22, 27redivcld 10853 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
2928adantll 750 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ)
3018adantl 482 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
31 subge0 10541 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
322, 31mpan2 707 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − 1) ↔ 1 ≤ 𝐴))
3332biimparc 504 . . . . . . . . . 10 ((1 ≤ 𝐴𝐴 ∈ ℝ) → 0 ≤ (𝐴 − 1))
3430, 33jca 554 . . . . . . . . 9 ((1 ≤ 𝐴𝐴 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)))
3521, 25jca 554 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1)))
36 divge0 10892 . . . . . . . . 9 ((((𝐴 − 1) ∈ ℝ ∧ 0 ≤ (𝐴 − 1)) ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
3734, 35, 36syl2an 494 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ ((𝐴 − 1) / (𝐵 − 1)))
38 flge0nn0 12621 . . . . . . . 8 ((((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ ∧ 0 ≤ ((𝐴 − 1) / (𝐵 − 1))) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
3929, 37, 38syl2anc 693 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0)
40 nn0p1nn 11332 . . . . . . 7 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
4139, 40syl 17 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ)
42 simplr 792 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 ∈ ℝ)
4321adantl 482 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵 − 1) ∈ ℝ)
44 peano2nn0 11333 . . . . . . . . . . 11 ((⌊‘((𝐴 − 1) / (𝐵 − 1))) ∈ ℕ0 → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4539, 44syl 17 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0)
4645nn0red 11352 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ)
4743, 46remulcld 10070 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
48 peano2re 10209 . . . . . . . 8 (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
4947, 48syl 17 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ∈ ℝ)
50 simprl 794 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐵 ∈ ℝ)
51 reexpcl 12877 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
5250, 45, 51syl2anc 693 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ)
53 flltp1 12601 . . . . . . . . . 10 (((𝐴 − 1) / (𝐵 − 1)) ∈ ℝ → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5429, 53syl 17 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))
5530adantr 481 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) ∈ ℝ)
5625adantl 482 . . . . . . . . . 10 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 < (𝐵 − 1))
57 ltdivmul 10898 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℝ ∧ ((𝐵 − 1) ∈ ℝ ∧ 0 < (𝐵 − 1))) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5855, 46, 43, 56, 57syl112anc 1330 . . . . . . . . 9 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐴 − 1) / (𝐵 − 1)) < ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ↔ (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
5954, 58mpbid 222 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
60 ltsubadd 10498 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
612, 60mp3an2 1412 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ∈ ℝ) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6242, 47, 61syl2anc 693 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ((𝐴 − 1) < ((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) ↔ 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1)))
6359, 62mpbid 222 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1))
64 0lt1 10550 . . . . . . . . . . . 12 0 < 1
65 0re 10040 . . . . . . . . . . . . 13 0 ∈ ℝ
66 lttr 10114 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6765, 2, 66mp3an12 1414 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐵) → 0 < 𝐵))
6864, 67mpani 712 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 < 𝐵))
69 ltle 10126 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
7065, 69mpan 706 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
7168, 70syld 47 . . . . . . . . . 10 (𝐵 ∈ ℝ → (1 < 𝐵 → 0 ≤ 𝐵))
7271imp 445 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7372adantl 482 . . . . . . . 8 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 0 ≤ 𝐵)
74 bernneq2 12991 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7550, 45, 73, 74syl3anc 1326 . . . . . . 7 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → (((𝐵 − 1) · ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)) + 1) ≤ (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7642, 49, 52, 63, 75ltletrd 10197 . . . . . 6 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
77 oveq2 6658 . . . . . . . 8 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐵𝑘) = (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1)))
7877breq2d 4665 . . . . . . 7 (𝑘 = ((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) → (𝐴 < (𝐵𝑘) ↔ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))))
7978rspcev 3309 . . . . . 6 ((((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1) ∈ ℕ ∧ 𝐴 < (𝐵↑((⌊‘((𝐴 − 1) / (𝐵 − 1))) + 1))) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8041, 76, 79syl2anc 693 . . . . 5 (((1 ≤ 𝐴𝐴 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 1 < 𝐵)) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
8180exp43 640 . . . 4 (1 ≤ 𝐴 → (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
8281com4l 92 . . 3 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (1 < 𝐵 → (1 ≤ 𝐴 → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘)))))
83823imp1 1280 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 1 ≤ 𝐴) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
84 simp1 1061 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
85 1red 10055 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
8617, 83, 84, 85ltlecasei 10145 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cfl 12591  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by:  expnlbnd  12994  expmulnbnd  12996  bitsfzolem  15156  bitsfi  15159  pclem  15543  aaliou3lem8  24100  ostth2lem1  25307  ostth3  25327  knoppndvlem18  32520
  Copyright terms: Public domain W3C validator