| Step | Hyp | Ref
| Expression |
| 1 | | cpmatsrngpmat.s |
. . . 4
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| 2 | | cpmatsrngpmat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 3 | | cpmatsrngpmat.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 4 | | eqid 2622 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 5 | 1, 2, 3, 4 | cpmatelimp 20517 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)))) |
| 6 | 1, 2, 3, 4 | cpmatelimp 20517 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 7 | 6 | adantr 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 8 | | ralcom 3098 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑙 ∈
𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) ↔ ∀𝑗 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) |
| 9 | | r19.26-2 3065 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 10 | | ralcom 3098 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 11 | 9, 10 | bitr3i 266 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 12 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
| 13 | | nfra1 2941 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑐∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) |
| 14 | 12, 13 | nfan 1828 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 15 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 16 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 17 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 18 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 19 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑥 ∈ (Base‘𝐶)) |
| 20 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑥 ∈ (Base‘𝐶)) |
| 21 | 3, 16, 4, 17, 18, 20 | matecld 20232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃)) |
| 22 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 23 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑦 ∈ (Base‘𝐶)) |
| 24 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑦 ∈ (Base‘𝐶)) |
| 25 | 3, 16, 4, 18, 22, 24 | matecld 20232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃)) |
| 26 | 15, 21, 25 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)))) |
| 27 | 26 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)))) |
| 28 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘)) |
| 29 | 28 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘))) |
| 30 | 29 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐)) |
| 31 | 30 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅))) |
| 32 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑙 = 𝑘 → (𝑙𝑦𝑗) = (𝑘𝑦𝑗)) |
| 33 | 32 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗))) |
| 34 | 33 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐)) |
| 35 | 34 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 36 | 31, 35 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 37 | 36 | rspcva 3307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑘 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 39 | 38 | exp4b 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑐 ∈ ℕ → (𝑘 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))))) |
| 40 | 39 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑘 ∈ 𝑁 → (𝑐 ∈ ℕ → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))))) |
| 41 | 40 | imp31 448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 42 | 41 | ralimdva 2962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 43 | 42 | impancom 456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (𝑘 ∈ 𝑁 → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
| 44 | 43 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
| 45 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 46 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 47 | 2, 16, 45, 46 | cply1mul 19664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅))) |
| 48 | 27, 44, 47 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → ∀𝑐 ∈ ℕ
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
| 49 | 48 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) ∧ 𝑐 ∈ ℕ) →
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
| 50 | 49 | an32s 846 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘 ∈ 𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
| 51 | 50 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 52 | 51 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (0g‘𝑅)))) |
| 53 | | ringmnd 18556 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 54 | 53 | anim2i 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd)) |
| 55 | 54 | ancomd 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin)) |
| 56 | 45 | gsumz 17374 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 58 | 57 | ad4antr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 59 | 52, 58 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅)) |
| 60 | 59 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
| 61 | 14, 60 | ralrimi 2957 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅)) |
| 62 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring) |
| 63 | | nnnn0 11299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℕ0) |
| 64 | 63 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0) |
| 65 | 2 | ply1ring 19618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 66 | 65 | ad4antlr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑃 ∈ Ring) |
| 67 | 16, 46 | ringcl 18561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
| 68 | 66, 21, 25, 67 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
| 69 | 68 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ∀𝑘 ∈ 𝑁 ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
| 70 | 69 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘 ∈ 𝑁 ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
| 71 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin) |
| 72 | 2, 16, 62, 64, 70, 71 | coe1fzgsumd 19672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) →
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐)))) |
| 73 | 72 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) →
(((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
| 74 | 73 | ralbidva 2985 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
| 75 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
| 76 | 61, 75 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)) |
| 77 | 76 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 78 | 11, 77 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 79 | 78 | expd 452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 80 | 79 | expr 643 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
| 81 | 80 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑗 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
| 82 | 81 | imp31 448 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) ∧ 𝑗 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 83 | 82 | ralimdva 2962 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (∀𝑗 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 84 | 8, 83 | syl5bi 232 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 85 | 84 | ex 450 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 86 | 85 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 87 | 86 | impancom 456 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (𝑖 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 88 | 87 | imp 445 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 89 | 88 | ralimdva 2962 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
| 90 | 89 | ex 450 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 91 | 90 | expr 643 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
| 92 | 91 | impd 447 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 93 | 7, 92 | syld 47 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ 𝑆 → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 94 | 93 | com23 86 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 95 | 94 | ex 450 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
| 96 | 95 | impd 447 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 97 | 5, 96 | syld 47 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
| 98 | 97 | imp32 449 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)) |