MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatmcllem Structured version   Visualization version   GIF version

Theorem cpmatmcllem 20523
Description: Lemma for cpmatmcl 20524. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatmcllem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Distinct variable groups:   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑐   𝑁,𝑐,𝑥,𝑦,𝑖,𝑗   𝑃,𝑐   𝑅,𝑐,𝑥,𝑦   𝑦,𝑆   𝐶,𝑘   𝑘,𝑁,𝑐,𝑖,𝑗,𝑥,𝑦   𝑃,𝑘   𝑅,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑖,𝑗)   𝑆(𝑥,𝑖,𝑗,𝑘,𝑐)

Proof of Theorem cpmatmcllem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . 4 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2622 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 3, 4cpmatelimp 20517 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅))))
61, 2, 3, 4cpmatelimp 20517 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
76adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
8 ralcom 3098 . . . . . . . . . . . . . . . 16 (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
9 r19.26-2 3065 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
10 ralcom 3098 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
119, 10bitr3i 266 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
12 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁))
13 nfra1 2941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
1412, 13nfan 1828 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
15 simp-4r 807 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
16 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Base‘𝑃) = (Base‘𝑃)
17 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
18 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
19 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ (Base‘𝐶))
2019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑥 ∈ (Base‘𝐶))
213, 16, 4, 17, 18, 20matecld 20232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃))
22 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
23 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦 ∈ (Base‘𝐶))
2423adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑦 ∈ (Base‘𝐶))
253, 16, 4, 18, 22, 24matecld 20232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃))
2615, 21, 25jca32 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
2726adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
28 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘))
2928fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘)))
3029fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐))
3130eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅)))
32 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑙 = 𝑘 → (𝑙𝑦𝑗) = (𝑘𝑦𝑗))
3332fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗)))
3433fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐))
3534eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3631, 35anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3736rspcva 3307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3938exp4b 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐 ∈ ℕ → (𝑘𝑁 → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
4039com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 → (𝑐 ∈ ℕ → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
4140imp31 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4241ralimdva 2962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4342impancom 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑘𝑁 → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4443imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
45 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (0g𝑅) = (0g𝑅)
46 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (.r𝑃) = (.r𝑃)
472, 16, 45, 46cply1mul 19664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅)))
4827, 44, 47sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4948r19.21bi 2932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
5049an32s 846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
5150mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘𝑁 ↦ (0g𝑅)))
5251oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))))
53 ringmnd 18556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5453anim2i 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
5554ancomd 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
5645gsumz 17374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5857ad4antr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5952, 58eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
6059ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
6114, 60ralrimi 2957 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
62 simp-4r 807 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring)
63 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
6463adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0)
652ply1ring 19618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6665ad4antlr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑃 ∈ Ring)
6716, 46ringcl 18561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6866, 21, 25, 67syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6968ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
7069adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
71 simp-4l 806 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin)
722, 16, 62, 64, 70, 71coe1fzgsumd 19672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))))
7372eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → (((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7473ralbidva 2985 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7574adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7661, 75mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
7776ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7811, 77syl5bi 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7978expd 452 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8079expr 643 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8180com23 86 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8281imp31 448 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) ∧ 𝑗𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8382ralimdva 2962 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
848, 83syl5bi 232 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8584ex 450 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8685com23 86 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8786impancom 456 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (𝑖𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8887imp 445 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8988ralimdva 2962 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
9089ex 450 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9190expr 643 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9291impd 447 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
937, 92syld 47 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9493com23 86 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9594ex 450 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9695impd 447 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
975, 96syld 47 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9897imp32 449 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cn 11020  0cn0 11292  Basecbs 15857  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   ConstPolyMat ccpmat 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-sra 19172  df-rgmod 19173  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-cpmat 20511
This theorem is referenced by:  cpmatmcl  20524
  Copyright terms: Public domain W3C validator